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ABSTRACT

Dengue fever is a public health problem and accurate forecasts can help govern-
ments to take the best preventive actions. As the volume of data provided contin-
uously increases, machine learning and deep learning (DL) models have become an
attractive approach. However, it is difficult to perform accurate predictions in areas
with fewer cases. In this work, traditional approaches such as LARS LASSO Re-
gression (LR), Random Forest (RF), Support Vector Regression (SVR) vs DL mod-
els based on Long Short-Term Memory (LSTM) are compared, considering weekly
Dengue incidence and climate, in 217 cities in Paraguay.

Several cities may present heterogeneous behaviors and poor accuracy, to miti-
gate this problem, two approaches are proposed: clustering and data augmentation.
First, clustering analysis between time series was performed, based on silhouette
scores for measuring how well observations are clustered. Results indicate that hi-
erarchical clustering combined with correlation is the most appropriate approach.
Then several LSTM models are compared on subgroups of similar time series. Sec-
ond, several data augmentation techniques were applied, and the synthetic time
series obtained was used as input to train models, the results indicate that the syn-
thetic series obtained with Bayesian estimation technique are the one that improved
the performance of the model.

The Root Mean Square Error (RMSE) confirms that the LSTM clustered mod-
els improve the accuracy in 19.48 ± 18.80% and LSTM with Bayesian based data
augmentation improves 16.86±16.57%. The main contribution of this work are two
techniques that can improve the performance of time series models by combining
information from similar time-series and weather data.

1An expanded summary in Spanish can be found in Appendix A
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Chapter 1

INTRODUCTION

Dengue fever is a mosquito-borne viral disease with a higher incidence in ur-
ban areas, Dengue is transmitted to humans mainly by the Aedes aegypti mosquito
acting as a vector. Symptoms include fever, headaches, joint and muscle pain,
and nausea [10]. The disease could cause from mild fever to severe conditions of
Dengue hemorrhagic fever and shock syndrome. Worldwide, it is estimated that
more than 50,000,000 infections occur each year, including 500,000 hospitalizations
for Dengue hemorrhagic fever [28]. Over the last decade, there has been a dra-
matic increase of Dengue infections in South American countries such as Colombia,
Ecuador, Paraguay, Peru, Venezuela, and Brazil. It is also known that Dengue has
an endemic characteristic, and this is why it is considered a public health problem
in tropical and subtropical regions [58].

In Paraguay, after the first Dengue epidemic in the period 1989-1990, no out-
breaks were reported for a decade, until a second big outbreak in 2007. From 2009,
a constant circulation is observed, reporting between the years 2009 to 2015 a sus-
tained increase in cases and a third major epidemic in 2013, the year in which
153,793 reported cases were observed and four serotypes are registered (DEN 1,
DEN 2, DEN 3, DEN 4), any of these serotypes being able to produce the disease
[59], Dengue has a high incidence in the country, as seen in Figure 1.1. Among all
cases reported by the Ministry of Public Health and Social Welfare (MSPBS, by
its Spanish acronym) in this period, more than one hundred deaths were identified.
These numbers reveal that Dengue imposes a high economic and social burden on
health care systems, affecting the public health system, households, and society in
general; people with underlying diseases and pregnant women are the most suscep-
tible to complications. The average cost incurred by each patient was 5,793,544 Gs.
(1053.53 USD) [57].

Currently, the fight against Dengue is based on adequate clinical and laboratory
care, epidemiological surveillance, and educational campaigns with vector control
programs as a basic strategy to mitigate the spread of Dengue. However, the results
have not been successful and in the absence of a more effective strategy e. g. with
the introduction of an effective vaccine, this disease will continue to produce a
considerable economic and social burden. The proper application of control measures
depends on the management of the beginning of the disease season. As the seasons
vary over the years, accurate forecasts can be critical tools in the fight against the
disease. In the absence of treatment able to control Dengue fever outbreaks, accurate
and early forecasts of Dengue might minimize the problem and help the government
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Figure 1.1: Map of Paraguay indicating the maximum incidence on each city from
year 2009 to 2013.

to implement effective control measures [2].
Modeling epidemic models requires multiple unknown variables such as the pop-

ulation, vector population, and their dynamics. In addition, parameters such as the
reproduction rate of the vector are affected by meteorological variables e.g., rainfall,
temperature, etc. So, to include them in the models, feature selection techniques
are usually applied. These techniques use multivariate metrics to select which set
of variables could be more informative to the model [67]. However, the relationship
between Dengue incidence and meteorological data is highly complex and cannot
be easily inferred [62, 65, 36]. Additionally, some data from health care providers
can arrive delayed, incomplete, or underestimated to the reporting system. Most of
the compartmental models e.g., SIR Model, are restricted to fit and characterize the
data only for one epidemic outbreak. This is why data-driven approaches based on
machine learning and deep learning have become competitive alternatives to tradi-
tional models by considering the incidence of a disease as a time series forecasting
problem [35, 71, 47, 46].

Understanding the behavior of the disease is a complex combination of epidemi-
ological and environmental factors, and is a difficult task for classical methods to
make predictions. In this context, models based on deep learning have proven to
have better or the same result than statistical models [54], in addition to allowing
more external variables to be handled in a simpler way. Deep learning approaches,
specifically LSTM (Long Short Term Memory) proposed by Hochreiter et al. [30],
have proven that they are able to outperform state-of-the-art models and have been
used to forecast influenza trends successfully [42, 76, 80]. However, to achieve opti-
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mal results with deep learning models, a large amount of data is necessary and the
lack of long-term data affects the performance of these models, producing overfitting.

This work investigates which model performs better predictions in the case of
Dengue fever epidemics, considering traditional machine learning vs deep learning
models. When the best candidate has been selected, two strategies well known in
the literature to improve model prediction are considered, i.e., clustering and data
augmentation.

Applying clustering techniques to time series is not a new procedure [40], but it
has recently been considered to improve the performance of deep learning models
[52, 50]. However, the effectiveness of the application of these techniques has not
been measured and when it has been done, it has been based solely on the final
performance of the model without evaluating the clustering techniques [4]. This
work seeks to carry out a detailed analysis of time series clustering to determine
which is the most appropriate technique to group time series of Dengue cases, and
then evaluate its contribution to the performance of the deep learning models.

Data augmentation is a widely used technique in the image processing area [63],
it consists of applying small transformations to the images such as adding noise
or rotating them, without affecting the main characteristics of the image. These
techniques, inspired by those applied in the image area, have already been adapted
to time series [56], without evaluating whether there is a benefit when applied to a
model. Another form of data augmentation for epidemiological series is to fit the
observed data with mathematical models [68], agent-based models [76], or Bayesian
data augmentation [20]. This work proposes how to apply Bayesian data augmenta-
tion to a time series, exploring the epidemiological component by applying a com-
bination of mathematical models (SIR model) and Bayesian inference to artificially
augment the data and this result is compared with the classic data augmentation
techniques.

The contribution of the clustering in the forecasting of Dengue cases is the iden-
tification of geographical areas of the behavior of the disease and the reduction of
the size of the models necessary to cover the country level. The contribution of the
Bayesian data augmentation technique in epidemiological mathematical models is to
provide complete information on the observed epidemiological events. In addition,
both techniques can be used to avoid overfitting in the models [70].

1.1 Objectives

1.1.1 General Objective

1. Propose strategies to improve the accuracy of Dengue fever models based on
deep learning by applying time series clustering and data augmentation

1.1.2 Specific Objectives

1. Evaluate traditional machine and deep learning models in order to select a
benchmark model to forecast Dengue incidence

2. Analyze which time series clustering methods can be used to simplify the
Dengue forecasting models.

3
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3. Propose a new Bayesian data augmentation approach based on synthetic data
generated by a compartmental model.

4. Evaluate traditional time series data augmentation against the proposed Bayesian
approach.

5. Quantify the improvement of clustering-based and data-augmentation-based
methods.

The work is organized as follows, Chapter 2, presents the techniques used for
the forecast; in Chapter 3 the fundamental bases and experimental results of the
first approach, clustering, are presented; Chapter 4 presents the foundations and
experimental results of the second approach, data augmentation; Chapter 5 shows
the discussion of the experimental results obtained and; finally, Chapter 6 presents
the conclusions and future work.
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Chapter 2

MODELING DENGUE FEVER

In this chapter, traditional and contemporaneous Dengue fever models are pre-
sented. Dengue fever is considered a public health problem and mathematical models
help to characterize outbreaks and make decisions. In the literature, deterministic
and statistical models have been developed to predict the incidence of the disease
as a function of time. Some of them are based on epidemiological and entomological
studies, and allow to include meteorological factors, vector population density, or
even social media data.

2.1 Compartmental Models

Among all the mathematical methods for modeling epidemics, the most basic
are the compartmental models. These categories of models usually assume that the
individuals in the population pass through several states (compartments) over time.
The model can be a set of ordinary differential equations, although can also run
with a stochastic framework. They can also reproduce the spatio temporal patterns
when they consider agents e. g., humans, vectors, etc. [9]. The following subsection
introduces one of the simplest compartmental models e.g., SIR model.

2.1.1 SIR Model

SIR is the acronym for Susceptible-Infected-Recovered, which are the compart-
ment labels or states considered in this model and are defined as follows:

• Susceptible population (S). Individuals without immunity to the disease and,
therefore, can become infected when exposed to the infectious agent.

• Infected population (I). Infected individuals and who can spread the infection
to susceptible individuals when they have contact depending on the disease
considered.

• Recovered population (R). Individuals who have immunity to the disease and
do not affect others when they come into contact. The deceased individuals
are also in this group.

This model captures the disease dynamics by defining only two parameters: the
transmission rate β and the recovery rate γ.
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At one given time, each individual can have only one state and can change its
state as shown in Figure 2.1. So, a susceptible individual can be infected (S → I),
then can recover (I → R) or die. Deaths are not considered in this work. Therefore,
the sum of the individuals should give the total population: N = S + I + R. The
total population (N), remains constant because births and deaths in the population
are not considered given the short period that the outbreak lasts.

S I R
βI γ

Figure 2.1: SIR model states. Adapted from [68].

Let t be the variable that indicates time and S(t), I(t) and R(t) the number
of people in each group at time t. For simplicity, the explicit representation of the
time where dropped. The set of differential equations which can model the temporal
variations of the fraction of people in different populations are:

dS

dt
= −βSI (2.1)

dI

dt
= βSI − γI (2.2)

dR

dt
= γI, (2.3)

where β is the transmission rate, i.e., the average number of contacts between Sus-
ceptibles and Infectious that lead to the infection of the Susceptible, per Susceptible
and per Infectious. The recovery rate γ, can be obtained as the inverse of the typ-
ical period (e.g., in days) that an Infected person remains infectious. Additionally,
a set of initial conditions for each state must be defined ie S0, I0, R0. Therefore, for
a given transmission and recovery rates, the SIR model predicts on scenario as in
Figure 2.2.

2.1.2 Other Compartmental Models

When more data is available, other variables must be considered to improve the
predictions, the SIR model can be extended adding new states such as:

• Asymptomatic population (A). Individuals who were in contact with an in-
fected and who can infect but did not develop symptoms of the disease.

• Exposed population (E). Individuals in the incubation phase, who are infected
but cannot yet infect.

• Deceased population (D). Individuals who die from the disease and are not
included in the R compartment.

• Maternally derived immunity (M). Infants with immunity inherited from their
mother.

Therefore, new states introduce new models such as SIS, SEIR, MSIR, SEIAR,
SEIS, SIRD, SEIRD, MSEIR, MSEIRS [9]. New equations also require the intro-
duction of new parameters, which can be:
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Figure 2.2: SIR model with values S0 = 999, I0 = 1, R0 = 0, N = 1, 000, β = 0.001
and γ = 0.1.

• µ: Death rate.

• B: Birth rate.

• σ: Temporary immunity rate.

•
1

ε
: Incubation rate.

These models can be used to predict how a disease spreads, the total number of
infected and the duration of one epidemic outbreak. In addition the aforementioned
models can be used to estimate various epidemiological parameters such as the re-
productive number. However, such models cannot predict the time for the next
outbreak. This limitation can be overcome by changing the formulation of the prob-
lem to a time series forecasting problem. To this end, statistical or machine learning
models can combine the information of more than one epidemiological season. So,
they can predict when the next outbreak may start.

2.2 Time Series: Data Analysis and Forecasting

Observational data organized sequentially according to their time of occurrence
are called a time series. Several areas like medicine, weather forecasting, economics,
and astronomy have a large amount of data collected and there is a need for method-
ologies to analyze and forecast variables using a combination of the past and other
correlated variables. In the case of Dengue fever epidemics, a time series model can
be used to predict the number of Dengue cases in the following weeks or when the
next outbreak can occur using historical data, see Figure 2.3. Other variables such
as temperature or humidity which affects the transmission rate can be also included
in the model.
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Figure 2.3: Time series that shows weekly incidence of Dengue cases in the five-year
period (2009 - 2013) in Asunción, a city in Paraguay.

A time series is a sequence of N observations, equidistant and ordered chrono-
logically through time [45]. A univariate time series can be represented as follows:

Y = {y1, y2, y3, ..., yN}, (2.4)

where yt is the observation at point t (1 ≤ t ≤ N) of the time series, and N is
the number of observations or length of the series. However, time series may arise
in distinct ways, sampled from a continuous series (e.g., temperature measured at
hourly intervals) or accumulated over a period of time (e.g., reported Dengue cases
in a week). Real problems usually requires the analysis of multivariate series which
can be organized in a matrix of order N ×M :

Y =


y11 y12 · · · y1M
y21 y22 · · · y2M
...

...
...

...

yN 1 yN 2 · · · yNM


where N is the length of each observation and M is the number of observed vari-
ables. The observed variables can be categorical, numeric, or Boolean. Given these
multivariate data, it is desirable to model not only the relationships between the
series but also between the series, as well as analyze the temporal interdependence
that the series have with each other.

Times series variations can be characterized in four categories of components
[14]:

1. Trend: indicates whether the values of the series are increasing or decreasing
during a long period of time (e.g., a year).

2. Seasonal variation: variations that are observed regularly every certain period
of time (e.g., less than a year, such as weekly, monthly, or quarterly).

3. Cyclic Variations: variations which occur over a span of more than one year
are the cyclic variations.

4. Random or Irregular movements: fluctuations which are unpredictable, un-
foreseen or uncontrollable.
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Another important characterization from a statistical point of view is the sta-
tionarity [77]. This statistical property assumes that the process generating the time
series does not change over time (e.g., mean, variance, autocorrelation, etc. are all
constant over time). However, if the time series is not stationary, a difference can
be applied to obtain stationarity. For example the first difference is the series of
changes from one period to the next:

y′t = yt − yt1. (2.5)

There are advanced tools and techniques to analyze time series from different
areas such as statistics, machine learning and deep learning. One common approach
is a statistical time series analysis because it assumes that the observations can be
characterized as a stochastic process i.e., a sequence of random variables, ordered
and equidistant chronologically, referred to one (univariate or scalar process) or sev-
eral (multivariate or vector process) characteristics of an observable unit at different
times [45].

2.2.1 Statistical Models: ARIMA, SARIMA

In time-series data, a point near in time tends to be strongly correlated to an-
other time. The simplest approach predicts the current value of the time series as
a linear combination of its previous values and the current residual, this method
is called Autoregressive (AR). There is a set of traditional statistical models that
combine this approach with a moving average scheme, (e.g., Autoregressive Mov-
ing Average (ARMA), Autoregressive Integrated Moving Average (ARIMA), and
Seasonal Autoregressive Integrated Moving Average (SARIMA)) [7].

An autoregressive model (AR) is typically represented as follows:

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, (2.6)

where yt−1, yt−2, ..., yt−p are the past values of the series, c is a constant, φ1, φ2, ..., φp

are the autoregressive model parameters, p is the auto regression order and the error
εt. If p = 1 the model will consider only t− 1 values to fit predict t.

A moving average (MA) model, instead of using past values for the regression
uses errors from past forecasts, a moving average model can be written as:

yt = c+ θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt, (2.7)

where θ1, θ2, ..., θq are the model parameters of the moving average, q is the order
(e.g., a model of order q = 3 takes the 3 moving window of three averages) and
εt are the error terms. The error terms are generally assumed to be independent,
identically distributed variables sampled from a normal distribution with zero mean.

Finally, the differentiation with the autoregressive, the autoregression, and mov-
ing average models are combined, the ARIMA full model can be written as follows:

y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt, (2.8)

where y′t is the differenced series (it may have been differenced more than once, i.e.,
d). Therefore the ARIMA model has three parameters (p, d, q):

• p: order of autorregresive part;
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• d: degree of differencing;

• q: order of the moving average part.

Where there are the following special cases:

• White noise, ARIMA(0,0,0).

• Random walk, ARIMA(0,1,0) with no constant.

• Random walk with drift, ARIMA(0,1,0) with a constant.

• Autoregression, ARIMA(p,0,0).

• Moving average, ARIMA(0,0,q).

To predict the seasonal component, a Seasonal ARIMA (SARIMA) model can
be used. This model introduces additional parameters as follows:

SARIMA (p, d, q)︸ ︷︷ ︸
non-seasonal part of the model

(P,D,Q)m︸ ︷︷ ︸
seasonal part of the model

,

where m is the number of observations per year. The uppercase parameters of the
seasonal part are similar to the lowercase ones that we have already seen, only that
they take the results of the non-seasonal part.

The models derived from artificial intelligence techniques, i.e., machine and deep
learning, have been shown to be able to handle multivariate time series effectively.
Although statistical methods are an important basis in forecasting time series, as
machine learning methods give better or equal results to statistical methods [54],
this work focuses on machine learning methods.

2.2.2 Machine and Deep Learning Models

Artificial intelligence is a broad research area that includes techniques that em-
ulate human thinking, such as pattern recognition, image classification, voice recog-
nition, language analysis, among others [25]. Machine learning (ML) is a subset of
artificial intelligence where there is a set of methods to deal with time series fore-
casting as a supervised learning problem. Deep learning (DL) is a branch of ML
which takes advantage of the large amount of data available to model complex and
nonlinear relationships [5]. The hierarchical relationship between ML and DL is
illustrated in Figure 2.4.

Both areas, DL, and ML have algorithms to forecast time series. However, they
use different approaches, i.e., ML has a set of algorithms such as regression models,
Support Vector Regression, Random Forest, while DL has a set of specialized recur-
rent neural network architectures that works like the biological neural connections
and the memory of the human brain e.g., Long-Short Term Memory (LSTM), Gated
recurrent units (GRUs), etc [39, 22]. Each model has its own characteristics and
depends on the type of problem faced. In the literature it has been shown that deep
learning models have reached the state of the art in the prediction of cases of in-
fluenza [79, 81, 82], which is also an endemic disease. To translate these results into
the forecast of Dengue cases, the characteristics of the problem must be analyzed.
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Artificial intelligence

Machine learning

Deep learning

Figure 2.4: Representation of the hierarchical relationship between machine and
deep learning techniques.

2.2.2.1 Support Vector Regression (SVR)

Support vector machine (SVM) analysis is a popular ML tool for classification
and regression, identified in 1992 [74]. The SVM for regression, called SVR, is a
supervised learning approach. Lets suppose that the input data a set of independent
variables (x1, · · · , xl) and the output another set of dependent variables (y1, · · · , yl)
e.g., Dengue incidence. The method of SVR can solve regression problems such as
time series [13]. Smola et al. [66] formulate the problem as a convex optimization
problem, the objective is to minimize the coefficients, specifically, the l2-norm of the
coefficient vector w. The error term is handled in constraints, where the absolute
error is set less than or equal to a specified margin, called the maximum error ε. Also
for any value that falls outside of ε, its deviation from the margin can be denoted
as ξ, this value is also is wanted to minimize. Then, the SVR is trained by solving:

min
w

1

2
||w||2 + C

∑̀
i=1

(ξ + ξ∗i )

s.t. yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(2.9)

where ξ = (ξ1, ξ
∗
1 , . . . , ξ`, ξ

∗
` ) is a slack variable, C > 0 is a penalty parameter and ε

is a free parameter that serves as a threshold. The inner product plus the intercept,
〈w, xi〉+ b is the prediction. All predictions must be within a ± ε range. SVR uses
the following parameters:

• Kernel. The kernel helps to find a hyperplane when the dimension of the data
increases, allowing to move to a higher dimensional space. Some regression
problems cannot be adequately described using a linear model. In those cases,
the dual Lagrange formulation makes it possible to extend the previously de-
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+
ε

−ε
ξ

ξ

Figure 2.5: Scheme of the SVR, adapted from [66].

scribed technique to non-linear functions. Obtain a nonlinear SVR regression
model by replacing the scalar product 〈x1, x2〉 with a nonlinear kernel function
G(x1, x2) =< φ(x1), φ(x2) >, where φ(x) is a transformation that assigns x to
a high-dimensional space.

• Hyperplane. It is the line (or plane in higher dimensions) that separates the
data sets in classes, in SVR, it is the space on which the forecasts will be made.

• Decision Boundary. It can be seen as a boundary space that can be seen as a
threshold.

The objective is to find a function that minimizes errors, basically SVR looks for
the values that are within the boundary decisions, i.e., accept the values that are
within ∆ε of the hyperplane reference as shown in Figure 2.5.

2.2.2.2 Least Angle Regression with LARS LASSO (LR)

In machine learning algorithms, the learning process consists of finding the co-
efficients (model) by minimizing a cost function. Least Absolute Shrinkage and
Selection Operator (LASSO) regularization consists of adding a penalty to the cost
function. This penalty produces simpler models that generalize better. Least An-
gle Regression finds the attribute which is most highly correlated to the target
value. Efron et al. [18] proposed a variation of the Least Angle Regression (LARS)
algorithm with LASSO regularization, which they called LASSO regression, this
algorithm is described in 1.

Suppose that a cost function J is defined considering the mean squared error as
follow:

J =
1

M

M∑
i=1

(yi − ŷi)2, (2.10)

where M is the number of observations, and yi and ŷi are the observed and estimated
values at ith observation with n predictors x1i, x2i, x3i, . . . , xni respectively.
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A LASSO regularization coefficient C can be added to measure of model com-
plexity. It can be written as follow:

C =
1

N

N∑
j=1

|wj|, (2.11)

where N is the number of coefficients of the model and w the coefficient vector. This
regularization can be introduced to the cost function J by adding a constant α as
follow:

J =
1

M

M∑
i=1

(yi − ŷi)2 + α
1

N

N∑
j=1

|wj|, (2.12)

where α indicates how important is the regularization, i.e., the simplicity in relation
to its performance. This regularization works better with simple models, it also has
the ability to discard predictors if the coefficients goes to 0.

Instead of giving a vector result, the LARS solution consists of a curve denoting
the solution for each value of the LASSO of the parameter vector.

Algorithm 1: LARS

start with all variables equal to 0 in the model
do

find a predictor xi most correlate with the target yi. The variable most
correlated is the one that makes the smallest angle with the target via
LASSO, hence the name

move in the direction of this variable until other variable xi+1 it is
equally correlated

keep moving in a direction such that the rest remain equally correlated
with xi and xi+1, until some variable xi+2 it also correlates with the
residual

if coefficient hits 0 then
drops its variable

end

while maximum of variables not reached

2.2.2.3 Random Forest (RF)

Given a set of data, algorithms are made based on diagrams of logical conditions,
very similar to flowcharts, which are used to represent and categorize a series of
conditions that happen successively, to solve a problem, these algorithms are called
decision trees. In 2001, Breiman describes the use in regressions of the Random
Forest [11] proposed by Ho [29]. Random Forest is a tree-based algorithm, that
basically consists of combining different predictions from several decision trees [41].
The figure 2.6 shows the structure of random forest, the trees are seen to run in
parallel.
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Training Data

Sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

Mean in regression or majority vote in classification

Prediction

Figure 2.6: Structure of Random Forest

Random forest works like this, first k samples are chosen from the training set,
then a decision tree associated with those k samples is generated. This procedure
is repeated for the n decision trees that are used, once the result of each tree is
had and the mean of the results is found, this is taken as the output of the random
forest. It is worth mentioning that Random forest is also a classification technique
and that instead of returning the mean of the results obtained, the result with the
majority of votes is returned.

2.2.2.4 Long-short Term Memory (LSTM)

Recurrent neural networks (RNN) are a type of network that integrates feedback
cells, which allows the network to maintain information from a certain amount of
training periods, this type of network has good results in the area of classification
of imaging and object detection [60].

Long-short term memory is a RNN specifically designed to forecast time series,
thanks to its memory cells which preserves long and short dependencies [30]. These
LSTM cells have input (i), forget (f), and output (o) gates which determine the
addition of new information to cell state (C), deletion of less important information
from memory, and output gate that controls the output prediction (h). Similarly to
Recurrent Neural Networks, a LSTM network uses sequential information in which
the output depends not only on the current inputs but also on previous ones, e.g., the
input of a point xt is a value xt−n in the same series, where n is the look back. These
gates work together to learn and store long- and short-term information related to
the sequence. Figure 2.7 shows an LSTM cell architecture.
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Figure 2.7: LSTM cell architecture showing the forget, input, and output gates and,
the hidden state. Adapted from [53].

States of LSTM cells are computed as follows [6]:

it = σ(Wiht−1 + Uixt + bi), (2.13)

ft = σ(Wfht−1 + Ufxt + bf ), (2.14)

ot = σ(Woht−1 + Uoxt + bo), (2.15)

Ĉt = tanh(WCht−1 + UCxt + bC), (2.16)

Ct = ft � Ct−1 + it � Ĉt, (2.17)

ht = ot � tanh(Ct), (2.18)

where W ∈ Rh×d, and U ∈ Rh×h and bq ∈ Rh are weights matrices and bias respec-
tively, the subscript q can be either for input gate i, output gate o, forget gate f , or
memory cell c depending on what is being calculated. The subscripts d and h refer
to the number of input features and the number of hidden units, respectively. The
� is the Hadamard entrywise product. Vectors it ∈ Rh, ft ∈ Rh and ot ∈ Rh are
the input, forget and output gates, respectively. Vector Ct ∈ Rh is the current cell
state, and vector Ĉ ∈ Rh is the new candidate value for the cell state. The function
σ(·) is a Sigmoid function and modulates equations (2.13)-(2.15) between 0 and 1.

The decisions for these three gates are dependent on the current input xt ∈ Rd

and the previous output ht−1 ∈ Rh. If the gate is 0, then the signal is blocked
by the gate. Forget Gate ft defines how much of the previous state ht−1is allowed
to pass. Input gate it decides which new information from the input to update or
add to the cell state. Output gate ot solves which information to output based on
the cell state. These gates work together to store and learn long and short-term
sequence related information. The memory cell C is as an accumulator of the state
information. Update of old cell state Ct−1 into the new cell state Ct is computed
using equation (2.17). The calculation of new candidate values Ĉ of memory cell and
output of current LSTM block ht uses hyperbolic tangent function as in equations
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(2.16) and (2.18). The two states, cell state and hidden state, are being transmitted
to the next cell for every time step. Weights and biases are obtained by minimizing
a cost function, during the training. An LSTM neural network consists of a set of
connected LSTM cells.

During the training procedure LSTM cells weights are tuned iteratively, starting
from random weights. The main idea of this process is to cycle through all sequences
in the training set a certain number of times, where each cycle is called one epoch.

The most common loss function is used, i.e., the mean squared error. The smaller
value of the loss function means that the prediction of our model is improving. To
minimize the error of the loss function an optimization algorithm is used, i.e., Adam
algorithm.

2.2.3 Training time series models

The models mentioned above (SVR, LASSO LARS, RF, LSTM) have shown to
have good performance with time series and are traditionally used for these prob-
lems, however each technique has its particularity and must be taken into account,
such as:

• In RF, a large number of trees are necessary to get stable estimates of variable
importance and proximity [41].

• LR is a good option if is suspected that some predictors of the model are
unnecessary, since they can be discarded if they reach the value 0 [18].

• SVR is not recommended for large or extremely noisy datasets, since the pa-
rameter ε will be difficult to choose [72].

• SVR is effective in cases where the number of dimensions is greater than the
number of samples.

• When there are highly correlated features, LR may randomly select one of
them of part of them [18].

• The number of trees necessary for good performance grows with the number
of predictors in RF [41].

• LSTM requires large amounts of data to avoid overfitting [70].

To perform a regression in time series it must be taken into account that time
series have the particularity that they are autocorrelated, i.e., an observation xt is
correlated with an observation xt−h where t is the index of an observation and h is
an integer such that h ≤ t. Therefore, the historical data of the series should be
used to forecast subsequent data of the same series, in addition to the meteorological
variables that are considered. This is done through sliding windows, where one part
of the series is taken to forecast the next part in the same series. Figure 2.8 describes
the sliding window procedure.

To validate the performance of the time series forecasting models, the data is split
in train-test sets, for network training and test respectively. During the training,
observed data is the input and, during the test, the performance is evaluated. For
this problem the input is the incidence of Dengue cases and some meteorological
variables whose selection process is described in 2.4.
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Training	input	(X) Training	output	(Y)

Variable	size Fixed	size

Slide

Figure 2.8: Time Series split for model validation, adapted from [6].

2.3 Dengue Fever Cases Forecast Evaluation

In order to evaluate each model predictions, a way to measure the performance
of each model must be defined.

There are several metrics that are traditionally used to measure time series fore-
casting error, these are: Mean Absolute Error (MAE), Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and
Symmetric Mean Absolute Percentage Error (SMAPE). Since forecast performance
is evaluated for time series with the same scale and the data preprocessing proce-
dures were performed, it is reasonable to choose MAE, MSE or RMSE according to
Shcherbakov et al. [61]. In this work, the RMSE was used to measure the perfor-
mance of each model because it considers the distance between the predicted and
observed values. In this work, the following definition for the root mean squared
error is considered.

Definition 1. The root mean squared error (RMSE) is defined as follows

RMSE :=

√√√√ 1

n

n∑
i=0

(Yt − Ŷt)2, (2.19)

where Yt is the Dengue incidence observed for time t, and Ŷt is the incidence predicted
by the model for a time t, and n is the size of the set.

2.4 Dengue Cases in Paraguay

Dengue fever cases (c) from January 2009 to December 2013, organized in 217
cities of 17 states in Paraguay, and population (p) of each city, was provided by
the COMIDENCO project [27]. The COMIDENCO dataset has data individually,
each record corresponds to a case and has the status of the patient, hospital, city,
department, whether or not they traveled and blood count data. COMIDENCO
team curated data to develop epidemiological models. The meteorological data
were obtained from weather stations that are distributed throughout the country
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Figure 2.9: Time series available for each city in the country, in this sample:
Asunción. Values are Incidence (Icd), Average Temperature (T a), Average At-
mospheric Pressure (Pra) and Weekly Rainfall (Rw)

[17]. Meteorological data included daily reports of minimum, average and maxi-
mum temperature, minimum, average and maximum atmospheric pressure, rainfall,
maximum, average and minimum wind speed and cloudiness.

2.4.1 Sample Selection

As there are 217 cities, a representative sample of the cities was made. The cities
time series where divided in three equal-sized groups according to their population,
because cities with less population usually have fewer cases. The first group (de-
noted as Group 1, corresponds to most populated cities) is composed by taking the
population from the 66th to 100th percentile, the second group (denoted as Group
2, corresponds to intermediate populated cities) from the 33th to 66th percentile,
and the last group (denoted as Group 3, corresponds to less populated cities) from
the 0th to 33th percentile. Time series of five cities from each group are randomly
selected. The selected cities where:

1. Group 1

(a) San Lorenzo

(b) Capiatá

(c) Caaguazú

(d) Areguá
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(e) Salto del Guairá

2. Group 2

(a) Choré

(b) Juan León Mallorqúın

(c) Santa Rosa del Aguaray

(d) Quiindy

(e) Eusebio Ayala

3. Group 3

(a) Encarnación

(b) San Pedro del Ycuamandiyú

(c) Capitán Miranda

(d) Yhú

(e) Santa Rita.

These samples will be used for all experiments here in after.

2.4.2 Data Preprocessing

To develop predictive models, the data is organized weekly. Once the time series
for each city is obtained, the Dengue fever incidence is computed. In this article we
consider the following definition for the incidence of Dengue in a city in terms of
percentage.

Definition 2. The incidence of Dengue fever in a city, denoted as Icd, is given by

Icd := 100
c

p
, (2.20)

where c is the number of cases per week and p is the population.

Incidence is the number of new cases of a disease that occurs over a specific period
of time, such as a week. Incidence shows the probability that a person in a certain
population is affected by that disease. As it is a percentage measure, it was decided
to work with the incidence rather than the number of cases, as a normalization.

According to [50], the features selected are mean temperature, atmospheric pres-
sure, and rainfall. To obtain an effective value for each group, the features are
combined weighting them by their corresponding city population.

Finally, there are four variables used in our model, the incidence and three
meteorological variables. Each time series has 265 records, since there are 265 weeks
in the period 2009-2013. The details of these variables can be seen in Table 2.1, an
excerpt of the time series can be seen in Figure 2.9.

Table 2.1: Feature parameters for the LSTM model

Parameter Symbol Unit
Weekly incidence of Dengue cases Icd %

Average temperature T a Co

Average atmospheric pressure Pra mmHg
Weekly rainfall Rw mml
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2.5 Benchmark Model Selection
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Figure 2.10: Summarized workflow of the benchmark model selection process. The
data is grouped weekly and the Dengue cases incidence (Icd) is computed as de-
scribed in (2.20), then, the data is trained and tested with machine learning tech-
niques (LSTM, RF, SVR and LR) to determine which one has the best performance
in order to be selected as benchmark model.

In order to select a machine learning model as a benchmark for the experiments
to be performed, this section presents a comparison of a LSTM model with tradi-
tional machine learning models known for their ability to forecast time series data.
The comparison ranks each approach according to certain performance criteria e.g.,
RMSE. Random Forest (RF), LARS LASSO Regression (LR), Support Vector Re-
gression (SVR), and LSTM are used. Figure 2.10 shows the workflow of the selection
process.

The parameters were defined as follows: for RF number of trees = 1,000 [32],
for LR α = 1, 662e− 6 was used [38], for SVR we use ε = 0.2 and Radial Basis
Function (RBF) kernel [31] and for LSTM 1 layer with 8 neurons, the default values
from the deep learning library were used (learning rate = 0.001, β1 = 0.9, β2 = 0.999,
ε = 1× 10−8) [64].

Table 2.2 shows that in all Groups (most, intermediate, and less populated cities),
the LSTM model have the lowest RMSE on 9 of 15 cities. RF seems to be the second
model with good results. While, LR presents better results only in 3 cities of 15.
This is why the LSTM model is selected as the benchmark model.

When the data is stationary, LSTM models usually have better performance. In
order to check if all time series are stationary, the Augmented Dickey-Fuller test was
conducted (see Appendix B). For each series, the p-value is less 0.05, therefore, the
time series are stationary and easier to generalize [37]. To validate the performance
of LSTM model, the data was splitted in train-test sets, 70%− 30% of of each time
series that was used for network training and test respectively. Therefore, the train
set consists in 185 of 265 records. To describe the input vector associated to each
city, consider a vector associated Xti corresponding to a specific week ti, where the
vector Xti = [Icdti, T

a
ti, P r

a
ti, R

w
ti]. Then the input of the model is a concatenated

vector X = [Xt1, Xt2, Xt3, ..., Xt185] which has the information of the 185 weeks.
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Table 2.2: Comparison of models performance using the RMSE score. Values in
bold indicate the best values.

Group City LSTM RF LR SVR

Group 1

San Lorenzo 0.1360 0.1424 0.0565 0.1477
Capiatá 0.1334 0.0219 0.0993 0.2318
Caaguazú 0.0266 0.0386 0.0395 0.0381
Areguá 0.1201 0.2204 0.2274 0.2261
Salto del Guairá 0.0259 0.0309 0.0273 0.0342

Group 2

Chore 0.0075 0.0065 0.0071 0.0183
Juan León Mallorquin 0.0096 0.0107 0.0124 0.0115
Santa Rosa del Aguaray 0.0060 0.0055 0.0068 0.0101
Quiindy 0.0095 0.0113 0.0090 0.0236
Eusebio Ayala 0.0101 0.0105 0.0117 0.0151

Group 3

Encarnación 0.0028 0.0035 0.0044 0.0037
San Pedro Del Ycuamandijú 0.0033 0.0033 0.0033 0.0033
Capitán Miranda 0.0031 0.0031 0.0033 0.0043
Yhú 0.0017 0.0015 0.0016 0.0025
Santa Rita 0.0021 0.0017 0.0017 0.0081
Average RMSE 0.0332 0.0342 0.0340 0.0519

2.6 Discussion

Fitting models to the time series of many cities is a challenging task because
some cities display low and high incidences, showing heterogeneous behavior. That
is why it is difficult to find a model that generalizes all cities, and particularly for
machine learning techniques, the length of the series may not be enough for the
models to fit correctly. As each model has its particularity, the available data must
be analyzed. Particularly in the problem of forecasting Dengue fever cases, two main
drawbacks are identified:

1. Multi-spatial forecasting. Models are needed that can generalize a geographic
space, i.e., a country and its cities, or that can be generalized to a large group
of cities.

2. Lack of data. Since time series are closely related to time, it is difficult or
sometimes impossible to collect data on past epidemics. Furthermore, the
Dengue fever epidemic is relatively recent, as explained in Section 1, and the
time series are not very long. Lack of data leads to a model overfitting.

The first drawback can be addressed by grouping the data, searching for those
that behave in a similar way, that option must be analyzed, unsupervised clustering
techniques must be studied, and the most suitable for time series determined. This
approach will be addressed in Chapter 3.

The second drawback, if it is not possible to collect more data, can be addressed
by generating synthetic data that represent the observed data, for that, a model must
first be found that represents the behavior of the series. In the case of deep learning
networks, they are less prone to overfitting the larger the database [70]. A common
procedure in the image area is to increase data by generating new images from
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the existing ones and applying small transformations to them, such as cropping,
rotating, changing the contrast or adding noise [75]. A similar approach can be
applied to time series, and also applying statistical techniques such as Bayesian
inference that allow the generation of new series that maintain their characteristics.
This approach will be addressed in the Chapter 4.
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TIME SERIES CLUSTERING

Clustering is an unsupervised machine learning task aimed to classify in groups a
big amount of data when there is not prior knowledge about real groups. Partitions
in groups are made in such a way that the elements of a group are as similar as
possible to each other [40].

3.1 Clustering Algorithms

Clustering techniques are classified according to the way they perform the parti-
tions, thus having centroid-based, connectivity-based, and density-based, the most
representative being the k-means algorithm, hierarchical clustering and DBScan re-
spectively [40].

K-means [3] algorithm tries to find a partition of the samples in k clusters, so that
each sample belongs to one of them, specifically the one whose centroid is closest. A
centroid is the middle of a cluster, which can be thought of as the multidimensional
average of the cluster. Algorithm 2 shows the k-means partitioning process.

Algorithm 2: k-means

Data: time series to cluster, number of clusters to form (k)
Result: clusters

1 place the centroids c1, c2, ..., ck randomly
2 do
3 foreach datapoint xi do
4 find the nearest centroid (ci)
5 assign the point to that cluster

6 end
7 foreach cluster j = 1, ..., k do
8 cj = mean of all points assigned to that cluster
9 end

10 while convergence or maximum of iterations

In hierarchical clustering [49], clusters are generated as the name implies, hi-
erarchically. It starts by taking every data point as a cluster. Then, the closest
points merge into a single cluster, and so on until all points are in a single cluster.
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Algorithm 3 shows the hierarchical clustering process.

Algorithm 3: Hierarchical clustering

Data: n time series to cluster
Result: dendogram

1 assign each item to a cluster
2 for i = 1 to n− 1 do
3 find the most similar pair of clusters and merge them into a single cluster
4 recalculate the distance between the new cluster and the other points

5 end

Finally, a cluster of size n is obtained, where n is the initial number of points to
group. It seems pointless to form a single large group with all elements. However,
the goal of hierarchical clustering is to form a dendrogram. A dendrogram is a tree
that shows the merging process, from this dendrogram, cut points can be defined
and form groups as seen in Figure 3.1.

Figure 3.1: Dendrogram formed by applying hierarchical clustering to a sample of
20 cities from the COMIDENCO dataset [27], five groups formed can be observed,
the lines represent the distances between elements and the lines of the same color
represent those that are in the same cluster.

In DBScan [19], for each point, the neighborhood of a given radius must contain
at least a minimum number of points to belong to a cluster. DBScan needs two
parameters:

• eps. Is the radius of distance to define a neighborhood, i.e., if the two points
are at a distance ≤ eps it means that they are in the same neighborhood.

• MinPts. Minimum number of neighbors, i.e., data points within the eps ra-
dius.
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The algorithm starts by visiting a random point, the neighborhood of this point
is visited, and if it has enough points (≥MinPts) it is said that it is dense enough
and a cluster is started on it. If not, the point is labeled as noise. This process
continues until a densely connected cluster is built. Then a new point is visited to
discover another cluster or noise. Algorithm 4 describes the DBScan.

Algorithm 4: DBScan

Data: time series to cluster, eps, MinPts
Result: clusters

1 foreach p unvisited points do
2 mark p as visited
3 mark as neighbors points with distance ≤ eps from p
4 N = neighborhood length of p
5 if N ≥MinPts then
6 C = clusters of p neighborhood
7 if p is not a member of any cluster then
8 add p′ to cluster
9 end

10 else
11 mark p as noise
12 end

13 end

As seen, there are parameters that must be entered beforehand to run the algo-
rithms, the most crucial being the number of clusters.

3.1.1 Number of Clusters

Unless the number of clusters required is known in advance, determining the
optimal number of clusters (k) is a complex task. This is a frequent problem in
data clustering, since it is an input parameter that is needed for some clustering
algorithms, and there is no certain answer, however, there are techniques that help
to infer the optimal number of groups, such as:

• Elbow method. Is a heuristic method that consists of graphing the variation of
an error metric as a function of the number of clusters and choosing the elbow
of the curve as the number of clusters to use. This method works by computing
the algorithm method, e.g., k-means for different values of k, varying k from
1 to n (n ≥ 2), then choosing the value where the error starts to stop being
significant, which would look like the ”elbow” of the graph, the calculated
error is the within-cluster sum of squares (WSS), i.e., the sum of the squared
deviations from each observation and the cluster centroid. Algorithm 5 shows
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the procedure to find the optimal number of clusters using the elbow method.

Algorithm 5: Elbow method

Data: time series to cluster, upper limit of cluster size (n)
Result: optimal number of clusters

1 for i = 1 to n do
2 compute the clustering algorithm with i clusters and calculate the WWS
3 end
4 plot the curve of WSS according to the number of clusters k
5 select the value that is on the curve (elbow) on the graph as the appropriate

number of groups

The reason the elbow of the plotted curve is considered as the optimal number
of clusters is because from the elbow the cost of the clusters does not con-
tribute much, then the groupings after the elbow do not have a significant
improvement in the separation of the components. Figure 3.2 shows a plot of
the elbow method.

• Silhouette score. Measures how well an observation is clustered by estimating
the mean distance between clusters. The silhouette value is a measure of how
similar an object is to its own cluster compared to other clusters. It ranges
from -1 to +1, where a high value indicates that the object is well matched
with its own cluster and poorly matched with neighboring clusters. If most of
the objects have a high value, then the cluster configuration is appropriate. If
many points have a low or negative value, then the cluster configuration may
have too many or too few clusters. The silhouette can be calculated with any
distance metric. Algorithm 6 shows the procedure to find the optimal number
of clusters using the silhouette score.

Algorithm 6: Silhouette score

Data: clusters, upper limit of cluster size (n)
Result: optimal number of clusters

1 for i = 1 to n do
2 compute the clustering algorithm with i clusters and calculate the

silhouette score

3 end
4 plot the curve of silhouette score according to the number of clusters k
5 select the maximum value on the curve of the graph as the appropriate

number of groups

It is also used to measure the quality of clustering, and it is the metric used
in the experiments of this work, the details are described in Section 3.3, the
formula that details it is shown in equation 3.4.
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Figure 3.2: Elbow method plot for InfoDengue dataset [16]. It is seen that the
selected value is the ”elbow” of the curve, in this case 4. The number of clusters
ranged from 2 to 30.

Figure 3.3: Silhouette score plot for InfoDengue dataset [16]. The maximum value
of the silhouette score indicates the optimal number of clusters, in this case 3. The
number of clusters ranged from 2 to 30.
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Once the number of clusters to be formed is selected, the way to measure the
distance between the elements to be grouped must be chosen, for this dissimilarity
metric must be determined.

3.1.2 Dissimilarity Metrics

The distance is used to determine how close a pair of observations are, the closest
observations are more similar and therefore may belong to the same cluster. The
metrics used to measure the distance between two observations are called dissim-
ilarity metrics. All clustering algorithms use dissimilarity metrics. Among all the
metrics to measure dissimilarity for time series, Euclidean distance and dynamic
time warping are the most cited in the literature according to Giusti et al. [26] ,
and correlation-based measures such as Spearman correlation are also used [34]. All
this metrics are known for their ability to measure time series, details are presented
below

• Euclidean. The distance between a pairwise y and ŷ is defined as

d(y, ŷ) =

√√√√ N∑
t=1

(yt − ŷt)2, (3.1)

where N is the length of the time series, and yt and ŷt are the t-th element of
time series Y and Ŷ , respectively. With this metric, distances are compared in
timesteps at the same time location. Y and Ŷ must be have the same length.

• Correlation. Is defined as

d(y, ŷ) = 1− (y − ȳ) · (ŷ − ¯̂y)

||(y − ȳ)||2||(ŷ − ¯̂y)||2
, (3.2)

where ȳ is the mean of the elements of time series y, ¯̂y is the mean of the
elements of time series ŷ, and y · ŷ is the dot product of y and ŷ .

• Spearman correlation. can be seen as a square of Euclidean distance between
two rank vectors, which is written as follows

d(y, ŷ) = 1− 6
∑

i rank(yi, ŷi)
2

N(N2 − 1)
(3.3)

To calculate the Spearman rank correlation, each data value is replaced by
their rank if the data in each vector would be ordered by their value. The
rank is the interval between the maximum value and the minimum value in
a pairwise. Then rank(yi) and rank(ŷi) are the ranks of time series y and ŷ
respectively. N is the length of the time series.

• Dynamic time warping. It is an algorithm designed to measure the difference
between two time series but not necessarily by measuring each point at the
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same timestep. Algorithm 7 describes how the Dynamic time warping works.

Algorithm 7: Dynamic time warping

Data: time series pairwise (y and ŷ)
Result: distance between time series

1 divide the series into n equal points
2 for i = 1 to n do
3 compute the euclidean distance, as in equation 3.1 between the i point

in the y series and every point in the ŷ series
4 store the minimum distance calculated
5 for i = 1 to n do
6 compute the Euclidean distance, as in equation 3.1 between the i

point in the ŷ series and every point in the y series
7 store the minimum distance calculated

8 end

9 end
10 add up all the minimum distances that were stored and this is the measure

of similarity between the two series

When time series are too long or when they have missing data, they tend to
become intractable for clustering algorithms with certain dissimilarity metrics, one
approach that addresses these problems is feature-based clustering.

3.2 Feature-based Algorithms

Feature-based clustering approach involves using the most significant features
from each time series and performing clustering based on those features. To obtain
features, Feature selection and feature extraction can be used. Feature selection
aims to reduce the number of feature sets available to a subset of relevant features
that minimize redundancy and increase the relevance of the features. The objective
of feature extraction is to obtain characteristics from the series themselves that are
relevant. Although Feature selection has been indicated as the most appropriate for
clustering [1], it must be had a set of observations of characteristics that are known
to be related. In the context of Dengue cases, this information is not available.
Therefore, feature extraction has become the simplest technique to perform feature-
based clustering.

Nanopoulus et al. [51] have proposed to extract some basic statistical character-
istics of the time series, obtaining robust results clustering, Mörchen et al. [48] has
proposed to use the Discrete Wavelet Transform and the Discrete Fourier Transform
and obtained an improvement in terms of computational cost, and Hyndman et al.
[33] have made a compilation of the most relevant features to extract for time series,
the features proposed by Hyndman et al. are:

1. Mean of time series.

2. Variance in time series.

3. First order of autocorrelation.

4. Trend. Is the value of the trend component of STL decomposition [15].
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5. Linearity. Augmented Dickey-Fuller test for linearity result.

6. Curvature. Computed based on the coefficients of an orthogonal quadratic
regression.

7. Seasons. Is the value of the trend component of STL decomposition [15].

8. Number of peaks. Also called spikes, are notoriously high values in the series,
above of the mean.

9. Spectral entropy.

10. Changing variance in remainder. Divide the series in blocks and the variances
of each block are computed and the variance of the variances across blocks
measures is the changing variance in remainder.

11. Level of shift using rolling window. Is the maximum difference in mean be-
tween consecutive blocks.

12. Variance change. Is the maximum difference in variance between consecutive
blocks.

13. Flat spots using discretization. Are calculated by dividing the time series
into ten equal-sized intervals, and computing the maximum length within any
single interval.

14. Number of crossing points. It is the number of points that cross the mean line.

15. Kullback-Leiber score. Is the maximum difference in Kullback-Leiber diver-
gence using kernel density estimation between consecutive blocks.

16. Index of the maximun Kullback-Leiber score.

This work uses Hyndman et al. proposed features followed by a clustering pro-
cess. After this, the quality of the groups formed must be evaluated, for that purpose
there are evaluation metrics.

3.3 Evaluation Metrics

There are two ways to validate clustering with internal techniques, also called
internal or unsupervised validation and external or supervised validation.

The internal validation is done on the results of the cluster, without having
access to other external information, i.e., the true labels of data. They are based
on cohesion and separation measures. Cohesion evaluates how closely the elements
of the same cluster are to each other, while separation measures quantify the level
of separation between clusters.

External validation techniques are based on external information, such as the
labels of the training data. They are related to supervised learning, these techniques
are based on comparing the expected values with those obtained.

Due to the nature of the problem of clustering time series of Dengue data, the
techniques to be used to evaluate the quality of clustering were internal validation
metrics, such as Silhouette Score or Calinski Harabasz index. The Calinski-Harabasz
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index is generally higher for convex clusters, like those obtained through DBSCAN
[44]. So it is not suitable for measuring results between density-based techniques
and hierarchical or partition-based techniques. Silhouette score is used to analyze
the separation distance between the resulting clusters. It is especially useful if there
is no prior knowledge of what is the true label for each object, which is the most
common situation in real applications. In this work, a pair of clusters A and B are
considered, the silhouette score s(i) is computed as [52]:

s(i) =
b(i)− a(i)

max(b(i), a(i))
. (3.4)

where i ∈ A, and a(i) is the mean distance associated to the point i to all the other
points in the cluster A. Similarly, b(i) is mean distance associated to the point i to
all the points of the cluster B.

To evaluate the quality of each cluster encountered in terms of cohesion, for
each cluster A, consider its associated a(i) as a metric between the point i and the
corresponding cluster A, i.e., how well the point i is assigned to the cluster A. In
this case, smaller the value of a(i), better the assignment.

To evaluate how the clusters are well defined in terms of separation one from each
other, we consider a cluster B such as i /∈ B, and such that the distance between
i ∈ A and the set B is the closest amongst all other encountered clusters. The
expression (3.4) provides a metric between the considered clusters A and B. In this
case, smaller the value of s(i), more the proximity of the clusters A and B. From
expression (3.4), notice that s(i) lies in the range of [−1, 1].

3.4 Clustering of Dengue Cases Time Series

Time series clustering can be used to improve the performance of a predictive
model for Dengue fever in two ways:

1. Each group can be taken as a unit, in this way a model can be adjusted for
all the individual components of that cluster, thus reducing the amount of
necessary adjustments per city.

2. For deep learning models, the greater the amount of data, the overfitting is
avoided and therefore the network performance improves.

Since there is no clue as to which class the series should belong to, there are
several uncertainties when performing clustering, such as: determining the number
of clusters, defining the metrics of dissimilarity, and if they are feature-based, deter-
mine which are the most relevant features. There are diverse options proposed to
deal with these uncertainties, and they depend on the approach of clustering that
is performed.

Liao [40], distinguish three main approaches to time series clustering:

1. Distance-based, directly with distances on raw data points.

2. Feature-based, indirectly with features extracted from the raw data.

3. Model-based, indirectly with models built from the raw data.
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The performance of Distance-based clustering approaches depends greatly on
the particular distance metric used because the time series may have noise, different
dynamics, different scales, etc. Feature-based performance depends on the correct
selection of the features that describe them. Those Model-based depend on the
selection of the model or the correct construction of the model. As there is no model
that describes the time series of Dengue cases, for this work, only the distance-based
and feature-based approaches were used.

When is required to model Dengue cases in several cities, it can be seen that some
have similar behaviors, this is why it is proposed to group them. To apply time series
clustering, definitions of several parameters are required, but these vary according to
each problem, therefore prior experiments must be carried out. This work propose
to perform clustering of time series of Dengue cases, for that the Distance-based and
Feature-based approaches were tested, since there is no model that can be assumed
to generate the time series of Dengue cases, the Model-based approach is not used.
The number of clusters is a necessary input parameter for some algorithms, using
the elbow method, the number of groups to be formed is calculated. The most
appropriate dissimilarity measures are determined through experiments, combining
the metrics with different clustering techniques. Finally, to decide which one obtains
the best results, the results are validated with an internal evaluation metric (3.4),
these clustered results will also be compared with data grouped according to the
political division of the country. A summarized workflow of this proposal is shown
in Figure 3.4.

Dengue Cases Time 
Series Dataset

Group by k-means
algorithm

Group by
hierarchical

clustering algorithm

Group by DBScan
algorithm

Select de 
algorithm

with highest
Silhoette

Score

Single: trained only with
data of current city

Department: trained
with data of cities of the

same department

Country: trained with
data of all cities in the

country

Cluster: trained with
data from the clusters

formed

Split in 
train/test

Split in train/test

Performance metric
(RMSE) of each

model

Clustering algorithm selection

Test each 
model with 

its 
respective 
test data

Comparison of LSTM based models with diferents data inputs

Figure 3.4: Summarized workflow of the experiments for time series clustering. All
Dengue cases time series are cluster with different algorithms (k-means, hierarchical
clustering and DBScan) then, the algorithm with best silhouette score is selected to
be used to generate the input for the Cluster model and its performance is evaluated
against Single, Department and Counry models. All models are LSTM based as
described in 2.5.

3.5 Experimental Results

A previous study to analyze which technique would be the most appropriate for
this case study was carried out. For this reason, several experiments comparing the
considered clustering techniques [40] performance were run, considering raw-based
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and feature-based approach, using the elbow method to determine the number of
clusters to form, applying different metrics for clustering and evaluating them with
silhouette score. The clustering methods applied were k-means, hierarchical, and
Dbscan. For the raw-based, a set of distance metrics were considered1. In the
case of feature-based clustering, a set of features were also considered according to
Hyndman et. al [33] (See Table 3.1).

Table 3.1: Features extracted from a time series

Feature Description
Mean Mean
Var Variance
ACF1 First order of autocorrelation
Trend Strength of trend
Linearity Strength of linearity
Curvature Strength of curvature
Season Strength of seasonality
Peak Number of peaks
Entropy Spectral entropy
Lumpiness Changing variance in remainder
Lshif Level of shift using rolling window
Vchange Variance change
Fspots Flat spots using discretization
Cpoints Number of crossing points
Klscore Kullback-Leiber score
ChangeIdx Index of the maximum KLscore

Table 3.2 presents the Silhouette scores (See equation 3.4) in order to compare
the raw-based and feature-based clustering. The first and second column scores
indicate that the best results are obtained with the feature-based methods with
Spearman correlation. K-means and Hierarchical clustering present similar scores.
However, based on [50] results, the method selected was hierarchical clustering. The
expanded results of clustering can be seen in Appendix C. Figure 3.5 shows that the
groups are not necessarily geographically close.

This work seeks to improve the performance of a deep learning neural network
to forecast Dengue cases through clustering. Clustering is carried out in four ways:

1. Considering each city of the country individually.

2. Considering administrative division of the country in departments. (Paraguay
has 17 departments or states which group several neighboring cities).

3. Grouping all the series of each city together.

4. Forming groups adopting the best clustering technique.

Based on this, the models considered were Single that was trained with data only
from the city (for this approach there are 217 models), Department was trained with
data of the department (for this approach there are 17 models), Cluster that used

1euclidean distance, correlation, spearman correlation, dynamic time warping
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Figure 3.5: Map that represents the Hierarchical clustering with Spearman corre-
lation distance of the cities of Paraguay by color codes. Cities of the same color
belong to the same cluster. It can be seen that the clusters are not necessarily
geographically contiguous.

Table 3.2: Silhouette score values for clustering methods. Values in
bold indicate the best ones on each row.

Clustering
method

Metric
Silhouette score

Raw
Data

Feature
based

K-
means

Euclidean distance 0.7059 0.7118
Correlation 0.1936 0.0048
Spearman correlation 0.4805 0.9953
Dynamic time warping 0.7489 -0.3017

Hierarchical
clustering

Euclidean distance 0.8387 0.6871
Correlation 0.0161 0.0016
Spearman correlation 0.4059 0.9954
Dynamic time warping 0.7489 0.6042

DBScan
Euclidean distance 0.8141 0.7327
Correlation 0.4543 0.0010
Spearman correlation 0.0054 0.9826
Dynamic time warping 0.0523 0.6447

data from each cluster formed (for this approach there are 6 models), and Country
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that was adjusted with all data from the country (for this approach there is 1 model).
All these models were evaluated at the city level to check their generalization in the
forecasts.

Table 3.3: Comparison of each clustered LSTM model using the RMSE. Values in
bold are the best ones.

Group City Single Department Cluster Country

Group 1

San Lorenzo 0.1360 0.0689 0.0510 0.0689
Capiatá 0.1334 0.1102 0.0940 0.1102
Caaguazú 0.0266 0.0165 0.0135 0.0165
Areguá 0.1201 0.1091 0.1003 0.1091
Salto del Guairá 0.0259 0.0211 0.0186 0.0203

Group 2

Chore 0.0075 0.0065 0.0063 0.0063
Juan León Mallorquin 0.0096 0.0091 0.0096 0.0088
Santa Rosa del Aguaray 0.0060 0.0047 0.0037 0.0039
Quiindy 0.0095 0.0091 0.0099 0.0092
Eusebio Ayala 0.0101 0.0114 0.0095 0.0097

Group 3

Encarnación 0.0028 0.0028 0.0026 0.0029
San Pedro Del Ycuamandijú 0.0033 0.0031 0.0027 0.0028
Capitán Miranda 0.0031 0.0033 0.0031 0.0033
Yhú 0.0017 0.0020 0.0016 0.0017
Santa Rita 0.0021 0.0021 0.0017 0.0022

Average RMSE 0.0332 0.0253 0.0226 0.0257

The incidence indicates that the largest number of cases are concentrated around
the capital and the northeast border cities. The models Single, Department,
Cluster and Country were trained with data from the city, the department, the
cluster to which it belongs, and all data from the country respectively. The Cluster
model is the one with the lowest RMSE in most cities compared to Single, Department,
and Country. Table 3.3 shows the RMSE for the predictions of these cities for the
first thirty-five weeks of the year 2013. Dengue incidence predictions for the first 35
weeks of 2013 are shown in Figures 3.6, 3.7 and 3.8.

The average maximum incidence rate is ≈ 0.33. In cities with an incidence rate
close to the mean, all models behave similarly well. Only in Group 2, intermediate
cities, Cluster model narrowly surpassed others models, as seen in Figure 3.7. How-
ever, the Cluster model has much better performance in cities from Group 1 (see
Figure 3.6) and 3 (see Figure 3.8), as is the case of the city of Capiatá, where RMSE
improves 14.7% compared to the best performing model, see Table 3.3. The differ-
ence is also better in cities with very low incidence, as in the case of Encarnación
the improvement in RMSE is 8.7%, in all cities with low incidence the improve-
ment is similar. In the models with incidences far from the average, the Single and
Department models tend to fail almost completely, being improved by up to 62.5%
by the Cluster model. The Country model remains second in most experiments,
the times in which it exceeds the Cluster model the average improvement is 5%,
which is not very significant compared to the rest. In addition, the Cluster model
outperforms the non-LSTM models that performed better on the benchmark test
(see Table 2.2).

The Country model underestimates peaks in cities with incidence lower than
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average. This can be seen in the case of the city of Encarnación where they have
the worst performance being 10.3% worse. This underestimation can happen due to
the fact that there are numerous cities with low incidence, yielding lower predictions
when the model is trained with all cities (217) of the database.
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Figure 3.6: Prediction of the incidence of Dengue in the cities of group 1 (San
Lorenzo, Capiatá, Caaguazú, Areguá and Salto del Guairá). Comparison of the
Single, Department, Cluster and Country models with a prediction of the first 35
weeks of the year 2013.
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Figure 3.7: Prediction of the incidence of Dengue in the cities of group 2 (Choré,
Juan León Mallorqúın, Santa Rosa del Aguaray, Quiindy and Eusebio Ayala). Com-
parison of the Single, Department, Cluster and Country models with a prediction
of the first 35 weeks of the year 2013.

38



Chapter 3. TIME SERIES CLUSTERING

Figure 3.8: Prediction of the incidence of Dengue in the cities of group 3 (Encar-
nación, San Pedro del Ycuamandijú, Capitán Miranda, Yhú and Santa Rita). Com-
parison of the Single, Department, Cluster and Country models with a prediction
of the first 35 weeks of the year 2013.
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Single model performs very similarly to Country, but fails in high incidence
cities. This can be clearly seen in the difference between the best model and himself
in these cases: Areguá 16.5% and San Lorenzo 62.5%. A possible cause for this
phenomenon is that low incidence cities usually do not record cases in the early
years of the epidemic. This means a lack of data for the model, and therefore, it is
not able to learn the behavior of the outbreaks.

The Department model is the one with the worst overall performance, his is not
too surprising as political-territorial organization is not related to the incidence of
Dengue cases.

In general, the models ranked according to how low RMSE they have are first
Cluster, second Country, third Single and finally Department. To cover the entire
country with Cluster it is necessary to train 6 models, for Country only one but with
a large amount of data which is quite computationally expensive and with Single
217 models are necessary, which represents a lot of work. Hence, when the country
needs to be analyzed, the Cluster presents the best trade-off between computational
cost and performance.
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Chapter 4

TIME SERIES DATA
AUGMENTATION

This chapter discusses classical data augmentation techniques applied to ma-
chine learning, also other more sophisticated ones such as Bayesian inference. The
basic idea of data augmentation is to generate a synthetic data set that covers the
unexplored input space while maintaining the correct labels [78]. In this way, it is
sought to reduce overfitting using the synthetic data when training a model.

Time series data augmentation

Basic approaches

Add noise
Flipping
Rotating
Cropping
Distort

Advanced approaches

Statistical techniques

Bayesian inference
Additive
Multiplicative
Seasonal Extraction in ARIMA (SEATS)
Seasonal and Trend decomposition using Loess (STL)

Learning techniques

GAN/Advesarial
RL

Model techniques

Figure 4.1: Taxonomy of data augmetation techniques for time series. Adapted from
[78].
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Synthetic data for data augmentation can be generated in several ways, Wen
[78] proposes a taxonomy for the classification of data augmentation techniques
for time series, as seen in Figure 4.1. The techniques are classified as Basic and
Advanced. All the techniques of the basic approach will be analyzed. For the ad-
vanced techniques, since the learning techniques are based on deep learning models,
and the objective of this work is to improve a deep learning model, this technique
will not be analyzed because it is redundant. For the techniques with models, it
is necessary to know a model and the parameters that generate the time series to
apply variations, in this case this information is not available. Of the statistical
techniques, only Bayesian inference allows obtaining a distribution of parameters
associated with the observations to generate synthetic data. The other statistical
techniques (additive, multiplicative, Seasonal Extraction in ARIMA (SEATS) and
Seasonal and Trend decomposition using Loess (STL)) are based on decomposing
the series into its components, such as trend or seasonality, these techniques allow
obtaining up to four decomposition of each one, which is not significant compared
to the others techniques.

Then, from the basic approach all techniques will be presented, and from the
advanced approach Bayesian inference will be presented. All the approaches will be
compared to each other in an experiment to determine which is the best performer.
Figure 4.2 shows a summary diagram of this proposal.

Dengue Cases Time 
Series Dataset

Augment data with
Noise technique

Noise: trained with data 
generated with the Noise

function

90%, 60% and all: trained
with. data generated using

90%, 60% and all parameter
distribution probability

Split in train/test

Performance metric
(RMSE) of each

model

Basic data augmentation

Test each 
model with 

its 
respective 
test data

Comparison of LSTM based models with diferents data inputs

Augment data with
Wave technique

Augment data with
Scale technique

Extract
outbreaks

from Dengue 
cases time 

series

Fit each
outbreak to
a SIR model

Perform
Bayesian

inference in 
each

outbreak

Concatenate
generated
outbreaks

Bayesian data augmentation

Split in train/test

Wave: trained with data 
generated with the Wave 

function

Scale: trained with data 
generated with the Scale

function

Single: trained only with
data of current city

Split in train/test

Split in train/test

Split in train/test

Figure 4.2: Summarized workflow of the proposal for data augmentation techniques.
New time series is generated to be used as input for the LSTM based models Noise,
Wave, Scale (using basic data augmentation approaches), 90%, 60% and all (using
Bayesian data augmentation approach) in order to compare them against each other
to determine which one has the best performance.
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(a) Original data (b) Noise (c) Scale

(d) Crop (e) Flip (f) Wave

Figure 4.3: Time series data augmentation techniques. Adapted from [56].

4.1 Basic Approaches

The basic approach to data augmentation is to apply small changes from the
original series to generate the synthetic ones. Recently, Rashid et al. [56] applied
data augmentation with methods similar to those applied in image processing. But
some techniques such as color variation cannot be adapted to time series since the
concept of color does not exist in this type of data, then not all techniques applied to
images can be applied to time series due to the differences between the data types.
In order to apply any of those techniques to time series, it is wanted that the series
does not lose the characteristics that define it.

For this work, techniques based on adding noise, shifting the observations and
scaling the series will be used. Since flip and crop directly change the seasons of
the observed series, the effects of these techniques can be seen in Figure 4.17. It is
necessary to clarify that the work of Rashid et al. addresses a problem of classifi-
cation of time series, while this work addresses a regression problem, specifically of
Dengue cases in Paraguay. However, Rashid et al. did not evaluate whether or not
the applied techniques produce a benefit for their problem. This is why in this work
these techniques for data augmentation will be considered individually to measure
their efficiency (if any) in the model.

This work seeks to evaluate the best data augmentation technique, these tech-
niques will be compared with each other, in order to determine which one has the
best performance. The best performing technique will then be compared to the
Bayesian Data Augmentation approach.

4.1.1 Experimental Results

These techniques seek to generate series similar to those observed but without
changing their trend, seasonality, or autocorrelation. The three techniques used for
this experiment are:

1. Noise. New time series are generated by adding white noise to them. White
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noise is a stochastic process where its variables are not correlated, a white
noise signal has zero mean which is generated taking random values from a
normal distribution with µ = 0 and σ = 1, then this value is added to the
original observation, thus the series with noise is obtained. Recall that µ is
mean and σ is standard deviation. Figure 4.4 shows the effect of applying
noise to the observed time series.

Figure 4.4: Time series observed with noisy series. For illustrative purposes only
five noisy series are shown.

2. Wave. This approach shift the values by a factor of i steps, can be expressed as:
yt = yt+i ∀yt ∈ Y , where Y is the time series. For this experiment i ∈ [−5, 5]
. Figure 4.5 shows the effect of wave.

Figure 4.5: Time series observed with series resulting from the wave function. For
illustrative purposes only five noisy series are shown.

3. Scale. This function consists of using a factor k in the time series, can be
expressed as: yt = yt ∗ k ∀y ∈ Y , where Y is the observed time series. For this
experiment k ∈ [−0.5, 0.5]. Figure 4.6 shows the effect of scale.
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Table 4.1: Comparison of each LSTM model using RMSE. Values in bold are the
best ones.

Group City Single Noise Wave Scaled

Group 1

San Lorenzo 0.1360 0.1242 0.0503 0.0675
Capiatá 0.1334 0.2598 0.1264 0.1218
Caaguazú 0.0266 0.0412 0.0223 0.0225
Areguá 0.1201 0.2623 0.1364 0.1191
Salto del Guairá 0.0259 0.0482 0.0252 0.0225

Group 2

Choré 0.0075 0.0191 0.0062 0.0063
Juan León Mallorquin 0.0096 0.0229 0.0089 0.0090
Santa Rosa del Aguaray 0.0060 0.0182 0.0036 0.0036
Quiindy 0.0095 0.0220 0.0087 0.0087
Eusebio Ayala 0.0101 0.0200 0.0112 0.0102

Group 3

Encarnación 0.0028 0.0053 0.0029 0.0029
San Pedro del Ycuamandijú 0.0033 0.0040 0.0027 0.0027
Capitán Miranda 0.0031 0.0074 0.0030 0.0031
Yhú 0.0017 0.0025 0.0015 0.0015
Santa Rita 0.0021 0.0077 0.0017 0.0017

Average RMSE 0.0332 0.0577 0.0274 0.0269

Figure 4.6: Time series observed with series resulting from the scale function. For
illustrative purposes only five noisy series are shown.

The Single, Noise, Wave and Scale models were trained with directly observed
data, with data created by adding noise to the observations, with data created by
moving the observations on the x-axis and with data created by multiplying the
observations by a scalar respectively. Table 4.1 shows that the Wave model is the
one with the lowest RMSE error in more cities, but the Scale model is the one with
the best average error. This is related to the standard deviation since the Scale
model exceeds or matches the Wave model as the tests are done in cities with lower
incidence.

The Single model outperforms the other metrics in certain cases, such as in the
city of Eusebio Ayala or Encarnacíın (see Figures 4.8 and 4.9), however its perfor-
mance does not present much difference, especially in cities with low incidence (see
Figure 4.9). It is important to note that the Single model was trained without ad-
ditional data, so it represents the result of not using data augmentation techniques.
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However, the advantage of the Single model over the one immediately after it is
only 9.3% in the best case, when it is not the best, the best model beats the Single
model by 63.1%.

The Wave model performs particularly well in the cities with the highest inci-
dence, in group 1, as seen in Figure 4.7. However, as it is tested in cities with lower
incidence, its performance dramatically decreases, in Figure 4.8 it can be seen how
that is the worst model of group 2 (cities with medium incidence). The relationship
between the incidence of cities and the performance of the network may be related to
the form of the series, cities with high incidence tend to have high and well-defined
peaks, while cities with low incidence do not have defined peaks or they do not have
any peak in the early years.

The Wave model may have the ability to capture the characteristics of the series,
however it does not seem to have the ability to capture the trend of the series. This
data augmentation technique can be useful for well-marked series with constant
trends.

The Scale model is the one that remains constant and is the best, albeit by little,
in most cities. The generalization capabilities of the Scale model do not seem to be
better than those of the Wave model, but the Scale model is closer to the peaks, it
is this characteristic that positions it as the best. Although no model has been able
to reach the real peaks, at least in this experiment.

The Noise model is the one with the worst performance, in most cases it is not
capable of inferring any variation in the series. Although there are cases where it
is observed that it has a certain capacity to detect where the peaks will be, as seen
in the city of San Pedro del Ycuamandijú (Figure 4.9). These results indicate that
noise is not well handled by the LSTM model, and that for input it may be to
suggest removing noise from the series.

Sorting the models based on their performance, the first place is occupied by
the Scale model followed closely by the Wave model, the Single model is third
and the Noise model is by far the worst model. The benefit of using these data
augmentation techniques is very low compared to previous experiments, but these
techniques have the advantage of being computationally inexpensive and do not
require other requirements to be used.
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Weeks

Figure 4.7: Prediction of the incidence of Dengue in the cities of group 1 (San
Lorenzo, Capiatá, Caaguazú, Areguá and Salto del Guairá). Comparison of the
single, Noise, Wave and Scaled models with a prediction of the first 35 weeks of
the year 2013.
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Weeks

Figure 4.8: Prediction of the incidence of Dengue in the cities of group 2 (Choré,
Juan León Mallorqúın, Santa Rosa del Aguaray, Quiindy and Eusebio Ayala). Com-
parison of the single, Noise, Wave and Scaled models with a prediction of the first
35 weeks of the year 2013.
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Weeks

Figure 4.9: Prediction of the incidence of Dengue in the cities of group 3 (En-
carnación, San Pedro del Ycuamandijú, Capitán Miranda, Yhú and Santa Rita).
Comparison of the single, Noise, Wave and Scaled models with a prediction of the
first 35 weeks of the year 2013.
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4.2 Bayesian Inference

Bayesian inference is a statistical inference technique based on Bayes’ theorem.
Bayes’ theorem is closely related to the concept of conditional probability [8]. The
conditional probability of an event A is the probability that the event occurs knowing
that an event B has already occurred. This probability is written P (A | B), which
means probability of A given B. In the case where event B has no effect on the
probability of event A, the conditional probability of the event A is simply the
probability of event A, i. e., P (A). From this definition, the conditional probability
is described as

P (A | B) =
P (A ∩B)

P (B)
, (4.1)

where P (A∩B) is the probability that A and B occur at the same time, and P (B)
is the probability of B occurring.

The term Bayes’ theorem is in honor of Reverend Thomas Bayes, and is also
referred as Bayes law [69]. This theorem shows the conditional probability or pos-
terior probability, or simply posterior of an event A after B is observed in terms of
the prior probability of A, prior probability of B and the conditional probability of
B given A. Bayes’ theorem is defined as follows

P (A | B) =
P (B | A)P (A)

P (B)
, (4.2)

where P (A) is the probability of A occurring, P (B) is the probability of B occurring,
P (B | A) is the probability of B given A and P (A | B) is the probability of A given
B. Bayes’ theorem relies on incorporating prior probability P (A) distributions in
order to generate posterior probabilities P (A | B), to show how true a hypothesis
is, based on evidence. This approach can be represented as follows

P (H | E) =
P (E | H)P (H)

P (E)
, (4.3)

whereH stands for hypothesis and E for evidence, P (H | E) is the so-called posterior
distribution probability, or simply posterior, P (E | H) is the likelihood - which
will be detailed later -, P (H) is the prior probability distribution, or simply prior,
represents the information available on the hypothesis regardless of any previous
experiment, P (E) is the marginal probability density of the data in all possible
hypotheses, it is equal to:

∫
H
P (E | H)P (H) dH. Equation 4.3 indicates that the

probability can vary as more evidence is added, therefore this process can be made
iterative and thus find the posterior probabilities.

In this context, Bayesian inference is a method of statistical inference that uses
Bayes’ theorem to update the probability of a hypothesis as more evidence is avail-
able. Bayesian models have in common the assignment of probability as a measure
of belief of a hypothesis (prior), so inference is a process of readjustment of measures
of belief when new evidence are known. Bayesian inference looks at the evidence
and calculates an estimated value based on the prior assigned to the hypothesis.
This implies that having more data available can obtain more conclusive results.
Moreover, a model can be considered as the hypothesis to be tested, this leads to
the definition of Bayesian Inference for parameter estimation.
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4.2.1 Bayesian Inference for parameter estimation

With the Bayesian formulation you can solve problems of parameter estimation,
model selection, and hypothesis testing, in this work it will be used for parameter
estimation. The basis of the Bayesian inference comes from the Bayes theorem, to
apply it to parameter estimation of models, the following modification is made to
equation 4.2:

P (Θ | y) =
P (y | Θ)P (Θ)

P (y)
, (4.4)

where y are observations and Θ is a set of parameters for a model, then the following
components are defined:

• P (Θ) is the set of prior distributions of parameter set Θ before y is observed.

• P (y|Θ) is the likelihood of y given a model.

• P (Θ|y) is the full posterior distribution, of parameter set Θ that expresses
uncertainty about parameter set Θ after considering both the prior and data
into account.

• P (y) is defined as
∫
P (y | Θ)P (Θ) dΘ.

Since there are usually multiple parameters, Θ represents a set of j parameters
that can be considered like this

Θ = θ1, θ2, ..., θj, (4.5)

With this approach, Bayesian inference can be used to apply it to a mathematical
model for Dengue cases, e.g., SIR Model, and obtain a probability distribution of its
parameters. Like any Bayesian approach, the main components are the prior and
the likelihood.

4.2.1.1 Prior Distribution

From the above data, the prior distribution is one of the main concepts in the
Bayes theorem and therefore in Bayesian inference, priors are basically a probability
distribution associated with the quantity Θ before any observation is available [55].
A probability distribution is a function that assigns a random variable a probability
of occurring , as exemplified in Figure 4.10. A prior can be determined from past
evidence, such as previous experiments. Prior probability distributions have usually
belonged to one of two categories: informative priors and uninformative priors.

• Informative priors. When previous information about the model parameters
is available, it is added as a prior, this can come from previous experiments or
from the literature. In this way the estimation does not start from scratch and
is closer to the expected solution. However, in most cases this information is
not available, so uninformative priors are used.

• Uninformative priors. Is a class of prior in which the objective is to mini-
mize the amount of subjective information content, and using a prior that is
determined only by the model and the observed data. Uninformative priors
also provide information to the model, only it makes the inference start more
scratch.
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Figure 4.10: Normal distributions with different values for the mean (µ) and stan-
dard deviation (σ) parameters.

Applied in Bayes’ theorem, the prior is multiplied by the likelihood function and
then normalized to estimate the posterior probability distribution.

4.2.1.2 Likelihood and Posterior Distribution

The likelihood function, measures how well a statistical model fits a sample of
data for given values of the unknown parameters. Likelihood represents the available
information provided by the observations. Is defined as:

P (y | Θ) =
n∏
i

P (yi | Θ), (4.6)

where yi is each sample of an observation, in this case, in a time series. The
effect of the data y on the posterior distribution P (Θ | y) is obtained through the
probability P (y | Θ).

In this way, the Bayesian inference based on models is carried out on the set of
parameters Θ of a certain model, for cases of Dengue it can be the SIR model, then
Θ = γ, β according to the equation 2.1, and the data y are the cases observed in a
certain period of time, the likelihood P (y|Θ) is defined by the probability of each
parameter of Θ, and the prior P (Θ) is the distribution that is estimated the pa-
rameter set Θ has before taking the observations into account. Finally the posterior
P (Θ|y) is the estimated probability distribution of the parameter set Θ according
to the observed data. Finally, with the posterior distribution, each possible value
for the set of parameters Θ has an associated probability and it can be verified how
likely it is to occur in the context of the observed data. As the result of Bayesian
inference is a distribution for the parameter set Θ, data augmentation for a deep
learning model can be done by generating several simulations with the parameters
that sample from Θ, as shown in figure 4.11.

What is done here is the estimation of unknown parameters of models from
observations that are assumed to come from that model, this is called an inverse
problem, in health areas such as epidemiology it is called parameter estimation
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Figure 4.11: Sample of fictitious data that mimics an epidemiological outbreak of
Dengue cases, the maximum value of the likelihood (MLE) and 1,000 simulations
generated with samples of the distributions of the set of parameters, in this case γ
and β from the SIR model.

or model calibration [73]. The main goal of parameter estimation is to find the
parameters for a model in such a way that the model output matches the observed
data as closely as possible. The estimation process usually consists of iteratively
varying the parameters of the model until the result fits the observed data. The
parameter estimation of the model can be seen as an optimization problem whose
objective is the best possible parameter configuration and look for techniques that
minimize the error, e. g., Least Squares Minimization. If the model is integrable,
an analytical solution can be found. If not, you can use a sampling algorithm
like Markov chain Monte Carlo can be used to sample and thus estimate the full
posterior distribution of parameters given priors and observed data [24].

4.2.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) combines Monte Carlo simulations and
Markov chains and, basically, is a computer–driven sampling method. Monte Carlo
simulations attempt to estimate a parameter by repeatedly generating random num-
bers.

Monte Carlo simulations seek to estimate a parameter by repeatedly generating
random numbers. Monte Carlo assumes that samples can be drawn in the domain
of the target, and as those samples fall into the target, the probability density
function of these points can be calculated. Suppose that a two-dimensional plane is
had where the points form a letter E, a function that characterizes those points is
difficult to find, but taking several random points in the plane and selecting those
that fall within the points that form the letter E, we can obtain the probability
density function of the parameters. That is the idea behind Monte Carlo. Indeed,
the more points are used, the better the result.

A Markov Chain is a discrete-time stochastic process where the current value
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is dependent on the value of the prior variable. This means that the current value
of the string depends only on the previous value in the chain. Mathematically, let
{X0, X1, ...} a stochastic process then (Xt)t≥0 is a Markov chain defined as:

P (Xt | X0, X1, ..., Xt−1) = P (Xt | Xt−1) (4.7)

A random walk is an example of a Markov chain. The random walk is a mathe-
matical formalization of the path that results from making successive random steps.
For example, on a number line, a random walk starts at a point X0, then randomly
takes a step to a position X1 randomly taking +1 or −1 steps from its current po-
sition. In a random walk, the next position depends only on the current position,
that is the behavior of a Markov chain.

Back in the context of distribution functions, MCMC is a combination of Monte
Carlo sampling and Markov chains. MCMC chooses a random parameter value to be
considered. The simulation will continue to generate random values (Monte Carlo),
but according to an algorithm that determines if it can be considered a good value
for the parameter. It is possible to compare each generated value with another and
determine which is more explanatory by calculating the probability that it represents
the data. If a randomly generated parameter value is better than the previous one, it
is added to the string of parameter values with some associated probability (Markov
chain).

The algorithm that determines if it can be considered a good value for the param-
eter is called Metropolis-Hastings, there are other algorithms, but for this work the
algorithm used is Metropolis-Hastings. This algorithm is based on a Markov chain
that generates a candidate for parameter. The algorithm attempt to determine if
the candidate is in the correct trajectory, by accept or reject a parameter candi-
date in the chain [23]. This algorithm first draws a candidate C of the distribution
Q(C;Xt) at position Xt, then the candidate is accepted with probability

min

(
1,
P (C | y)

P (Xt | y)

Q(Xt;C)

Q(C;Xt)

)
. (4.8)

where P (C | y) is the probability of the candidate given the data observed, P (Xt |
y) is the probability of the position Xt given the data observed, the transition
distribution Q(C;Xt) is a a distribution designed to be easy to sample, a common
parameterization of Q(Y ;X(t)) is a multivariate Gaussian distribution centered on
X(t) [21]. Algorithm 8, adapted form [21] represents the iterative step of Metropolis-
Hastings.

Algorithm 8: Step of Metropolis-Hastings

draw a candidate C ∼ Q(Y ;X(t))

q ← P (C | y)

P (Xt | y)

Q(Xt;C)

Q(C;Xt)
r ← R ∼ [0, 1]
if r ≤ q then

Xt+1 ← C
else

Xt+1 ← Xt

end

This means that if candidate C is not accepted, the position Xt is repeated in the
chain. In this way, the Metropolis-Hastings algorithm works together with MCMC.
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In summary, an inference can be made on the parameters of a model from Bayes’
theorem, iteratively obtaining samples using MCMC and evaluating the probability
of each sample. This technique allows obtaining a distribution of parameters for the
model, called posterior.

4.2.3 Bayesian Inference on Epidemic Models

Bayesian inference allows obtaining a distribution of parameters of a model, this
distribution is called posterior. By taking samples from this distribution, simula-
tions similar to the observations can be obtained. In this work, the model used to
characterize Dengue outbreaks is the SIR model.

The SIR model, as defined in equation (2.1), provides information on the situ-
ation of Susceptible, Infected and Recovered individuals, in the context of Dengue
cases. Only information on Infected individuals (observed data) will be used, figure
4.12 emphasizes the curve of infected in a simulation.

Figure 4.12: SIR model with initial values S0 = 999, I0 = 1, R0 = 0, N = 1, 000,
β = 0.002 and γ = 0.2. The curve of infected individuals (I) is highlighted.

Recalling Model-based Bayesian inference concept (Section 4.2.5), it is possible
to infer the distribution of parameters to generate data similar to the observations.
With this distribution of parameters, it is possible to perform simulations and obtain
data similar to those observed. The central idea of this experiment is to use these
simulations to improve the performance of an LSTM network, since the more data
the better the network performance [70].

4.2.4 Multi-season SIR model

The SIR model results in a single curve, which represents a single epidemic
outbreak, and the observations in the form of a time series are entered as input
into the LSTM network as a vector Y = [y1, y2, ..., yt] with t weekly observations, as
shown in figure 4.13.
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Figure 4.13: Observations of Dengue cases, in this sample: San Lorenzo city, the
data correspond to observations from 2009 to 2013. It can be seen that there are
five outbreaks.

An outbreak is the significant increase in cases in relation to the values usually
observed. When outbreaks occur seasonally, the disease causing the outbreaks is
said to be endemic, such as Dengue in Paraguay. In this way, each peak within the
time series represents an outbreak. In order to carry out the inference using the SIR
model for time series, in this work, a multi-season SIR model is proposed, to apply
this model first each peak of the time series must be extracted. The peaks of each
outbreak are found with algorithm 9.

Algorithm 9: Find peaks

Data: time series, range
Result: peaks

1 peaks=[ ]
2 TS= time series vector
3 t = time series length
4 diff = TS[0] - TS[1]
5 for i = 1 to t do
6 for j = i to range− 1 do
7 if diff 2 < 0 then
8 add TSr[j+1] to peaks
9 end

10 diff = TSr[j] - TSr[j+1]

11 end
12 peak=max(peaks)

13 end

Basically it is to find the local maximum in the time series, as an outbreak
lasts approximately 40 weeks [43], that is the value of range that was used in the
algorithm. From 2009 to 2013, there are five peaks or less depending on the city.
Once the peaks have been identified, the next step is to determine the beginning
and end of the outbreak. This is called finding the width of the outbreak. The
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algorithm 10 shows the process to find the width of an outbreak.

Algorithm 10: Find width of a single outbreak

Data: time series peaks
Result: peaks width start and end index

1 i=peak position
2 TS= time series vector
3 t = time series length
4 while TS[i] 6= 0 do
5 start=TS[i] i=i-1
6 end
7 j=peak position
8 while TS[j] 6= 0 do
9 end=TS[j] j=j+1

10 end
11

Figure 4.14 shows the peaks and the width of each outbreak as a result of the
algorithms 9 and 10, the observations are represented with a solid line for illustrative
purposes. This algorithm was used to find the peaks of each city.

Figure 4.14: Data from the city of San Lorenzo indicating the peaks found and their
width.

Then, for each city, the process of finding peaks is carried out and their widths
once we have the observations in the form of individual outbreaks (see figure 4.15)
can be adjusted to a SIR model.

Thus, a modified version of the SIR model can be defined for time series that
works by seasons, this model will be called SeasonalSIR. SeasonalSIR receives a
time series, finds the outbreaks and the beginning and end of each one, for each
outbreak, the traditional SIR model is executed, each outbreak is considered a sea-
son, a season with active cases is followed by another without cases, to handle this,
the SeasonalSIR model artificially drops the β value to zero. With an infection
rate of β ≤ 0, an outbreak does not occur. In this way, the SeasonalSIR model
can return a multiseasonal Dengue cases time series. Algorithm 12 shows how the
SeasonalSIR function works, start and end are vectors that have the beginning and
end of each season or outbreak respectively, seasons is a vector with an index for
each season of the series, β is a vector that contains the values of βs for each season
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Figure 4.15: A single outbreak taken from the series of observations of the city of
San Lorenzo.

Table 4.2: RMSE of different MLE functions and observations

Function RMSE
Poisson 2, 025.2399
Normal 2, 614.0839
Normal with moving average 6, 333.2479

and γ is a vector with the γs values for each season, SIR() runs the usual SIR
model according to the equation 2.1. Vectors starts,ends and peaks are obtained
from each time series to be adjusted. The vectors β and γ are the vectors to be
obtained by performing the Bayesian inference. The length of each vector is equal
to the number of seasons the series has.

Function SeasonalSIR(starts, ends, season, β, γ):
foreach season do

t = ends− starts
TS ←− SIR(β, γ, t)

end
return TS

End Function
Algorithm 11: SeasonalSIR function

To perform Bayesian inference on data, it is necessary, in addition to the data,
the likelihood function and the prior. In this case, there is no previous information
that helps to decide which is the likelihood function to use and the distribution
of the prior. Therefore, this is information must be assumed, to help decide what
likelihood function to use, a small experiment has been carried out.

The gamma, normal and normal likelihood functions were tested with moving
average and a maximum estimate of likelihood (MLE) was found. The estimate that
is closest to the observed data is considered the most appropriate. The difference
between the MLE and the observations is measured with RMSE (2.19). Table 4.2
shows the results of this experiment. Figure 4.16 shows a graphical comparison.
With this, everything necessary to perform the Bayesian inference is had.

All the previously proposed techniques (add noise, scale, shift, bayesian data
augmentation) will be applied to the Dengue database, before being trained with a
machine learning model, then the performance of each one will be evaluated and it
will be compared if there are improvements against the model without augmented
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Figure 4.16: Comparison of MLE values according to different likelihood functions
and observations.

data.

4.2.5 Bayesian Data Augmentation

Using the function SeasonalSIR (described in 12) with the likelihood and the
prior, the MCMC method can be applied to find the posterior. Each value of the
posterior obtained has an associated probability, so for example those with ≥ 90%
probability belong to the 90% credibility interval, in this experiment, the samples
are varied between credibility intervals to find the optimal. The following steps are
carried out for each city that belongs to the experiment:

1. Find the peaks and their respective widths.

2. Run MCMC for SeasonalSIR model.

3. Take 100 samples that belong to the 90% credibility interval of the posterior
one and generate 100 series from them.

4. Take 100 samples that belong to the 60% credibility interval of the posterior
one and generate 100 series from them.

5. Take 100 random samples from the posterior and generate 100 series from
them.

6. Train the LSTM model in 3 different groups, 90% (with the samples 90%
credibility interval), 60% (with samples of 60% credibility interval) and all
(with the random samples).

7. Compare the results of 90%, 60% and all using RMSE.

8. Perform a binary search to find the percentage that represents the interval
with the best results.

The MCMC took 100,000 samples per variable, and the posteriors were obtained
for each case. This is how the data was generated to feed the LSTM models. Fig-
ure 4.17 show the simulations along with the observations. All these models were
evaluated at the city level to check their generalization in the forecasts.
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(a) (b)

Figure 4.17: (a) and (b) are details of observations and simulations generated from
the samples taken from the posteriors. Only 50 simulations were plotted and the
series was cropped into single outbreaks for illustrative purposes.

4.2.6 Experimental results

The experiments were done on each time series individually. The models tested
were: all with 100 simulations generated with random samples from the distribution,
90% with 100 simulation from samples corresponding to the 90% credibility interval,
60% with 100 simulation from samples corresponding to the 60% credibility interval,
and single than the time series without added elements. Table 4.3 shows the RMSE
for the predictions of these cities for the first thirty-five weeks of the year 2013. The
results show that there is no significant difference between the models trained with
the simulations. The graphical representation of the models results is seen below
(See figures 4.18,4.19 and 4.20).

When analyzing the results in depth with more decimals, it was observed that
there is a difference at 1e−4 level between models, the plan was to perform a search
between the confidence intervals to find the one with the lowest error, i.e., the one
with the best performance, however the difference between the samples between
intervals was not as sensitive as expected. Therefore, this search was discarded and
all Bayesian based models were considered as having the same performance.

Regarding the goal of improving the performance of an LSTM model by aggre-
gating data, all models achieved that goal. In group 1 the improvement is up to
57.3%, in groups 2 and 3 this improvement drops to 10.4%. In addition, the 90%,
60% and all models outperforms the non-LSTM models that performed better on
the benchmark test (see Table 2.2). It can be concluded that adding simulations
generated from Bayesian inference improves the performance of an LSTM network.
It is important to note that this technique tends to overestimate the points. In
summary, when ranking the models as those with the best results all, 90% and 60%
are tied, the single model is the one with the worst performance. An important
observation is that these models outperform those that were better than LSTM in
the benchmark model selection section 2.5.
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Table 4.3: Comparison of each LSTM model using RMSE. Values in bold are the
best ones.

Group City Single 90% 60% all

Group 1

San Lorenzo 0.1360 0.0580 0.0580 0.0580
Capiatá 0.1334 0.1046 0.1046 0.1046
Caaguazú 0.0266 0.0152 0.0152 0.0152
Areguá 0.1201 0.1112 0.1112 0.1112
Salto del Guairá 0.0259 0.0202 0.0202 0.0202

Group 2

Choré 0.0063 0.0061 0.0061 0.0061
Juan León Mallorquin 0.0096 0.0094 0.0094 0.0094
Santa Rosa del Aguaray 0.0060 0.0058 0.0058 0.0058
Quiindy 0.0095 0.0094 0.0094 0.0094
Eusebio Ayala 0.0101 0.0090 0.0090 0.0090

Group 3

Encarnación 0.0028 0.0021 0.0021 0.0021
San Pedro del Ycuamandijú 0.0033 0.0032 0.0032 0.0032
Capitán Miranda 0.0031 0.0030 0.0030 0.0030
Yhú 0.0017 0.0016 0.0016 0.0016
Santa Rita 0.0021 0.0015 0.0015 0.0015

Average RMSE 0.0332 0.0240 0.0240 0.0240
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Weeks

Figure 4.18: Prediction of the incidence of Dengue in the cities of group 1 (San
Lorenzo, Capiatá, Caaguazú, Areguá and Salto del Guairá). Comparison of the
single, 90%, 60% and all models with a prediction of the first 35 weeks of the year
2013.
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Weeks

Figure 4.19: Prediction of the incidence of Dengue in the cities of group 2 (Choré,
Juan León Mallorqúın, Santa Rosa del Aguaray, Quiindy and Eusebio Ayala). Com-
parison of the single, 90%, 60% and all models with a prediction of the first 35 weeks
of the year 2013.
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Weeks

Figure 4.20: Prediction of the incidence of Dengue in the cities of group 3 (En-
carnación, San Pedro del Ycuamandijú, Capitán Miranda, Yhú and Santa Rita).
Comparison of the single, 90%, 60% and all models with a prediction of the first
35 weeks of the year 2013.
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4.3 Basic Approaches vs. Bayesian Data Aug-

mentation Experimental Results

Among the techniques of the basic approach, Scale was the one that obtained the
best result. From the techniques of the advanced approach, the Bayesian inference
model is had, as the results of these experiments are very similar, one was chosen
and it was called Bayesian. Both models are compared below as shown in Table
4.4.

Table 4.4: Comparison of each LSTM model using RMSE. Values in bold are the
best ones.

Group City Bayesian Scale

Group 1

San Lorenzo 0.0520 0.0675
Capiatá 0.0956 0.1218
Caaguazú 0.0138 0.0225
Areguá 0.1021 0.1191
Salto del Guairá 0.0188 0.0225

Group 2

Choré 0.0063 0.0077
Juan León Mallorqúın 0.0090 0.0098
Santa Rosa del Aguaray 0.0036 0.0051
Quiindy 0.0087 0.0101
Eusebio Ayala 0.0102 0.0117

Group 3

Encarnación 0.0029 0.0029
San Pedro del Ycuamandijú 0.0027 0.0032
Capitán Miranda 0.0031 0.0037
Yhú 0.0015 0.0020
Santa Rita 0.0017 0.0023

Average RMSE 0.0221 0.0429

The Bayesian model outperforms the Scale model in all the cities sampled.
Therefore, it can be said that among the data augmentation techniques, the most
effective is Bayesian, Figure 4.21 shows the performance comparison between the
models.
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Figure 4.21: Prediction of the incidence of Dengue in the cities of group 3 (En-
carnación, San Pedro del Ycuamandijú, Capitán Miranda, Yhú and Santa Rita).
Comparison of the Bayesian and Scale models with a prediction of the first 35
weeks of the year 2013.
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AUGMENTATION

The comparison of the results of the previous experiments considering the limi-
tations of each technique, they are:

1. The difference in the data generated. With the clustering technique, each
cluster has four time series per city (incidence, average temperature, average
atmospheric pressure, and weekly rainfall). The Bayesian inference technique
requires one model for each series, so only samples of the Dengue cases series
were generated.

2. The way the models were trained. Models were trained in on-the-fly mode,
i. e., for each iteration (epoch) of the model training, a different sample was
passed to it. This technique could not be applied to the clustering technique,
since the average number of elements in a cluster is 36.17, which means that
only ≈ 36 epochs can be made, when the others models were trained with 100
epochs.

So this comparison does not seek to determine which of all is the best, seeks
to determine in which case each is recommended. Two experiments have been
performed comparing different clustering techniques and different sampling criteria
for Bayesian inference models. From these experiments, the best for each case are
Cluster and Bayesian respectively. Figure 5.1 shows the performance comparison
between these with each other and with the Single model, which represents the
model without aggregated data.

When there are different time series of contiguous and delimited geographical
locations, the first step should be to group them according to the results of the
grouping experiment (see Section 3.5) the best way is to group them using clustering
techniques, in this case of hierarchical clustering. If clustering cannot be performed,
the best option is to characterize the series using a model and perform Bayesian
inference as described in Section 4.2.5. Clustering techniques and Bayesian infer-
ence techniques have shown to considerably improve the performance of the models,
reaching the expected values in several cases.

The Bayesian model allows to improve the performance of the network without
the need for more additional data, unlike the Cluster model where more series are
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needed to group them, therefore it is a good technique in case there is only one
time series, this is an advantage when there is a significant lack of data. However,
Cluster model in addition to improving the performance of the network, helps to
reduce the dimensionality of the problem, since it represents a smaller number of
models to train.

The Cluster model represents the increase in the complexity of the model, by
having a multidimensional input, the input is the incidence of Dengue cases and
three meteorological variables (incidence, average temperature, average atmospheric
pressure, rainfall). So the vector TS that represents a city is defined as:

TS =


Icd1 T a

1 Pra1 Rw
1

Icd2 T a
2 Pra1 Rw

2
...

...
...

...
Icd185 T a

185 Pra185 Rw
185


where Icd is the incidence, T a is the average temperature, Pra is the average

atmospheric pressure and Rw is the weekly rainfall, values range from 1 to 185 since
each series has 265 records, and training is done on the 70% of the series, leaving
the remaining 30% for validation. Then the input for each model m is defined as:

inputm =


TS1

TS2
...

TSd


where d is the dimension of each cluster. Once the input is entered into the model,
it is trained with 100 epochs (The training process is detailed in Section 2.5).

On the other hand, the Bayesian model has as input TSinput, the matrix:

TSinput =


Icd11 Icd21 · · · Icde1 T a

1 Pra1 Rw
1

Icd12 Icd22 · · · Icde2 T a
2 Pra1 Rw

2
...

...
...

...
...

...
...

Icd1185 Icd2185 · · · Icde185 T a
185 Pra185 Rw

185


where e is the number of epochs the model was trained, where e is the number

of epochs in which the model is trained. This input varies in each epoch, so that in
epoch e, the input TSinput is:

TSinput =


Icde1 T a

1 Pra1 Rw
1

Icde2 T a
2 Pra1 Rw

2
...

...
...

...
Icde185 T a

185 Pra185 Rw
185


this indicates that for each training, a different sample of incidence is used. This

training method (on-the-fly) is mostly used when looking to explore other informa-
tion in addition to the data that you have when training a model [12]. However,
due to the limitations of the amount of data, this method could only be used in the
Bayesian model since the necessary number of samples can be obtained from the
parameter distribution.
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Although both models showed improvements in the performance of the models
(See table 5.1), the most significant improvements are in group 1 for both cases.
Group 1 corresponds to the cities with high incidence, these cities in general have
more defined peaks. In groups 2 and 3, the peaks are not well defined or do not
exist, especially in the early stages of the observations, which indicates that at the
beginning of the epidemic, no cases were registered in the cities belonging to these
groups. Both techniques rely on the observations to improve the models, as the
series of group 1 are well defined, they are the ones with the best results.

The fact that the percentage of improvement is lower in the other cases does not
mean that it is not enough, this is seen in Figure 5.1, in the cities of Juan León
Mallorqúın and Eusebio Ayala (Group 2) and the city of Encarnación (Group 3).

The Cluster model was not always the best in all cases, unlike the Bayesian
model. This can be seen in cities where it has 0% of improvement, i.e., it was not
the best model.

Table 5.1: Analysis of the observed improvement percentages of the Cluster and
Bayesian models. Details of this calculation can be seen in Appendix D

Improvement (%)

Group City Cluster Bayesian

Group 1

San Lorenzo 62.5000 57.3529
Capiatá 29.5352 21.5892
Caaguazú 49.2481 42.8571
Areguá 16.4863 7.4105
Salto del Guairá 28.1853 22.0077

Group 2

Choré 16.0000 18.6667
Juan León Mallorqúın 0.0000 2.0833
Santa Rosa del Aguaray 38.3333 3.3333
Quiindy 0.0000 1.0526
Eusebio Ayala 5.9406 10.8911

Group 3

Encarnación 7.1429 25.0000
San Pedro del Ycuamandijú 18.1818 3.0303
Capitán Miranda 0.0000 3.2258
Yhú 5.8824 5.8824
Santa Rita 19.0476 28.5714

Average improvement 19.48± 18.80 16.86± 16.57
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Figure 5.1: Comparison of the best results obtained in each experiment in a sample of
cities (San Lorenzo and Caaguazú from group 1, Juan León Mallorqúın and Eusebio
Ayala from group 2 and Encarnación from group 3). Comparison of the models with
a prediction of the first 35 weeks of the year 2013.
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CONCLUSIONS AND FUTURE
WORKS

6.1 Conclusions

In this work, time series clustering and data augmentation techniques have been
tested to improve the performance of a deep learning model to forecasting Dengue
fever cases in Paraguay.

For representation, 5 random cities belonging to each group were selected (Group
1: high population, Group 2: medium population, Group 3: low population). The
experiments were carried out in these cities.

In order to carry out the experiments, the performance of techniques traditionally
used for forecasting time series (SVR, Random Forest, LARS LASSO , LSTM)
was compared, with the LSTM deep learning model having the best performance.
Therefore, LSTM was selected as the benchmark model, i.e., the reference model
for the other experiments. Using the LSTM model, it was sought to improve its
performance. In the experiments, the benchmark model is called Single.

Then the LSTM models were trained in different ways according to each ap-
proach:

1. Times series clustering. This approach sought to improve network performance
by training the LSTM model in series groups, thus having the following models:

(a) Department. The LSTM model was trained with the series grouped ac-
cording to the department to which they belong according to the political
division of the country.

(b) Country. The LSTM model was trained with all the series in the country.

(c) Cluster. The LSTM model was trained according to the clustering re-
sulting from clustering techniques. At this point, a previous study was
carried out to determine which is the most appropriate clustering tech-
nique. The number of clusters to be formed was determined with the
elbow method and several clustering techniques (k-means, Hierarchical,
DBscan) were tested, each with a set of distance metrics (Euclidean, Cor-
relation, Pearson’s Correlation, Dynamic time warping) and the results
were evaluated using silhouette score. The best results were obtained us-
ing hierarchical clustering and correlation, with this technique and metric
the algorithms were formed to train this model.
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Among these models, the one with the best overall performance was the
Cluster model. The improvement is especially observed in groups 1 and 3.

2. Data augmentation. This approach seeks to improve network performance by
increasing the amount of data by generating synthetic data from the observed
data. Models were formed using a basic approach and Bayesian inference

(a) Basic approaches. This approach consists of applying small transforma-
tions to the observed data to generate new ones, the models used were:

i. Noise. This LSTM model was trained with random noise variations
added to the observations.

ii. Wave. This LSTM model was trained with random variations from
the shifted series.

iii. Scale. This LSTM model was trained with variations of the series
multiplied by a random scalar.

Among these models, the one that had the best average performance was
Scale, however its performance is much worse than the Cluster model.

(b) Bayesian inference. The Bayesian LSTM model was trained with the
simulations obtained from the distribution of parameters obtained from
the proposed model. The model is a modified version of the SIR model
adapted for various seasons.

The Bayesian model far outperforms Scale, the best of the basic approach,
making Bayesian model the best among data augmentation techniques.

Both models (Cluster and Bayesian) have been shown to significantly improve
the performance of a deep learning time series forecasting model. Cluster model is
not always the best, especially in cities from groups 2 and 3, but is the model with
the most significant improvement. Bayesian is always the best model in all tests,
but tends to overestimate the cases. In problems in which a model must be adjusted
to an observation, one problem is overfitting, what happens when the model cannot
be generalized because it does not have enough information. So these techniques
can be considered as regularization methods to avoid overfitting.

6.2 Future works

Based on the results obtained, some future works that have been identified are
presented below.

• Apply these techniques in a time series classification problem.

• Combine clustering and Bayesian inference techniques.

• Optimize the clustering of the time series by designing more experiments.

• Use other modern machine learning models for forecasting time series (Gated
Recurrent Unit, Bidirectional recurrent neural networks, Deep transformer).

• Apply these approaches with other endemic and vector-borne diseases.
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Appendix A

Expanded summary in Spanish

Mejora del pronóstico de casos de Dengue en
Paraguay con aprendizaje profundo mediante
agrupación de series temporales y técnicas de

aumento de datos

A.1 Introducción

El Dengue es una enfermedad viral transmitida por mosquitos que se transmite
al ser humano principalmente por el mosquito Aedes aegypti como vector, con mayor
incidencia en las zonas urbanas.Durante la última década, ha habido un aumento
dramático de las infecciones por dengue en páıses de América del Sur como Colombia,
Ecuador, Paraguay, Perú, Venezuela y Brasil. También se sabe que el dengue tiene
una caracteŕıstica endémica, por lo que se considera un problema de salud pública
en las regiones tropicales y subtropicales.

En Paraguay, luego de la primera epidemia de dengue en el peŕıodo 1989-1990,
no se reportaron brotes durante una década, hasta un segundo gran brote en 2007.
A partir de 2009 se observa una circulación constante, reportando entre los años
2009 a 2015 un aumento sostenido de casos y una tercera gran epidemia en 2013,
año en el que se observaron 153.793 casos notificados.

Actualmente, la lucha contra el Dengue se basa en una adecuada atención cĺınica
y de laboratorio, vigilancia epidemiológica y campañas educativas con programas de
control de vectores como estrategia básica para mitigar la propagación del Dengue.
Sin embargo, no se ha tenido éxito y en ausencia de una estrategia más eficaz,
por ejemplo, la introducción de una vacuna efectiva, esta enfermedad seguirá pro-
duciendo una considerable carga económica y social. La correcta aplicación de las
medidas de control dependen del manejo del inicio de la temporada de dengue.
Dado que los brotes vaŕıan a lo largo de los años, los pronósticos precisos pueden
ser herramientas fundamentales en la lucha contra la enfermedad.

La mayoŕıa de los modelos compartimentales, como el Modelo SIR, están re-
stringidos a caracterizar los datos sólo para un brote epidémico y no tiene en cuenta
otras variables como las climáticas. Esta es la razón por la que los enfoques basa-
dos en el aprendizaje automático y el aprendizaje profundo se han convertido en
alternativas competitivas a los modelos tradicionales al considerar la incidencia de
una enfermedad como un problema de predicción de series temporales. Compren-
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der el comportamiento de la enfermedad es una compleja combinación de factores
epidemiológicos y ambientales, y es una tarea dif́ıcil para los métodos de regresión
clásicos. En este contexto, los modelos basados en el aprendizaje profundo han de-
mostrado tener mejores o iguales resultados que los modelos estad́ısticos, además
de permitir manejar más variables externas de una manera relativamente más fácil.
Enfoques de aprendizaje profundo, en concreto LSTM (Long Short Term Memory)
propuesto por Hochreiteret ha demostrado que pueden superar los modelos de la
literatura y se ha utilizado para pronosticar con éxito las tendencias de la influenza.
Sin embargo, para lograr resultados óptimos con modelos de aprendizaje profundo,
se necesita una gran cantidad de datos y la falta de datos a largo plazo afecta el
rendimiento de estos modelos produciendo un sobreajuste.

Este trabajo investiga qué modelo realiza mejores predicciones en el caso de las
epidemias de Dengue, considerando los modelos de aprendizaje automático tradi-
cionales frente a los de aprendizaje profundo. Una vez seleccionado el mejor can-
didato, se consideran dos estrategias bien conocidas en la literatura para mejorar la
predicción del modelo, es decir, agrupación y el aumento de datos. El componente
ambiental dr se explora agrupando datos para entrenamiento basado en su similitud
y se explora el componente epidemiológico al aplicar una combinación de modelos
matemáticos (modelo SIR) e inferencia Bayesiana para aumentar artificialmente los
datos. La contribución de la agrupación es la identificación por áreas geográficas
del comportamiento de la enfermedad y la reducción del tamaño de los modelos
necesarios para cubrir el páıs. La contribución de las técnicas de aumento de datos
bayesianos en modelos matemáticos epidemiológicos es proporcionar información
completa sobre los eventos epidemiológicos observados. Además, ambas técnicas
pueden utilizarse como regularizadores para evitar un sobreajuste en los modelos.

A.2 Objetivos

A.2.1 Objetivo general

1. Proponer estrategias para mejorar la precisión de los modelos de Dengue
basadas en el aprendizaje profundo mediante la aplicación de agrupaciones
de series de tiempo y aumento de datos.

A.2.2 Objetivos espećıficos

1. Evaluar los modelos tradicionales de aprendizaje profundo y de máquina para
seleccionar un modelo de referencia para pronosticar la incidencia del dengue.

2. Analizar qué métodos de agrupación de series de tiempo se pueden utilizar
para simplificar los modelos de pronóstico de dengue.

3. Proponer un nuevo enfoque de aumento de datos bayesiano basado en datos
sintéticos generados por un modelo compartimental.

4. Evaluar el aumento de datos de series de tiempo tradicionales frente al enfoque
bayesiano propuesto.

5. Cuantificar la mejora de los métodos basados en agrupamiento y en aumento
de datos.
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A.3 Propuestas

A.3.1 Agrupamiento de series temporales

La agrupación en clústeres es una tarea de aprendizaje automático no super-
visada que tiene como objetivo clasificar en grupos una gran cantidad de datos
cuando no hay conocimiento previo sobre grupos reales. Las particiones en grupos
se hacen de tal manera que los elementos de un grupo sean lo más similares posible
entre śı.

Dado que no hay ninguna pista sobre a qué clases debe pertenecer la serie,
existen varias incertidumbres al agrupar, como determinar el número de grupos,
definir las métricas de disimilitud y, si están basadas en caracteŕısticas, determinar
cuáles son las más relevantes. Hay varias opciones propuestas para hacer frente a
estas incertidumbres, y dependen del enfoque de agrupamiento que se realice. Se
utilizaron dos enfoques principales para el agrupamiento de series de tiempo:

1. Basado en distancia, directamente con distancias en puntos de datos sin proce-
sar.

2. Basado en caracteŕısticas, indirectamente con caracteŕısticas extráıdas de los
datos sin procesar.

Las técnicas de agrupación también se clasifican según la forma en que realizan las
particiones, teniendo aśı las basadas en centroide, las basadas en conectividad y
las basadas en densidad, siendo las más representativas el algoritmo k-means, la
agrupación jerárquica y DBScan respectivamente.

A menos que se conozca de antemano el número de grupos necesarios, determinar
el número óptimo de grupos (k) es una tarea compleja. Este es un problema frecuente
en la agrupación de datos, ya que es un parámetro de entrada que se necesita para
algunos algoritmos de agrupación, y no hay una respuesta segura, sin embargo,
existen técnicas que ayudan a inferir el número óptimo de grupos, tales como: el
método del codo y la evaluación de silueta. En este trabajo se utilizó la evaluación
de silueta.

Aunque todos los algoritmos de agrupamiento necesitan calcular la distancia, el
enfoque basado en la distancia toma las distancias entre cada par de datos brutos,
es decir, las distancias se miden directamente entre series de tiempo. La distancia
se utiliza para determinar qué tan cerca están un par de observaciones, las observa-
ciones más cercanas son más similares y, por lo tanto, pueden pertenecer al mismo
grupo. El enfoque de agrupación en clústeres basado en caracteŕısticas implica el
uso de las caracteŕısticas más importantes de cada serie temporal y la realización de
agrupaciones en función de esas caracteŕısticas.

Cuando lo que se quiere es modelar casos de Dengue en varias ciudades, se puede
ver que algunas tienen comportamientos similares, por eso se propone agruparlos.
Para aplicar la agrupación de series de tiempo, se requieren definiciones de varios
parámetros, pero estos vaŕıan según cada problema, por lo que se realizaron exper-
imentos previos. Entonces, en este trabajo se propuso realizar el agrupamiento de
series de tiempo de casos de dengue, para ello se probaron los enfoques basados en
la distancia y basados en caracteŕısticas, ya que no existe un modelo que se pueda
asumir que genere la serie temporal de casos de dengue. El número de grupos es

81



APPENDIX

un parámetro de entrada necesario para algunos algoritmos, utilizando el método
del codo se calcula el número de grupos a formar. Las medidas de disimilitud más
adecuadas se determinan mediante experimentos, combinando las métricas con difer-
entes técnicas de agrupamiento. Finalmente, para decidir cuál obtuvo los mejores
resultados, los resultados se validan con una métrica de evaluación interna (eval-
uación de silueta). Para utilizar este enfoque se necesitan varias series de tiempo
para poder agruparlas, en caso de que estas series de datos no estén disponibles, se
pueden utilizar otras técnicas para generar datos sintéticos basados en observaciones
individuales, como las derivadas de la inferencia estad́ıstica.

A.3.2 Aumento de datos

La idea básica del aumento de datos es generar un conjunto de datos sintéticos
que cubra el espacio de entrada inexplorado manteniendo las etiquetas correctas.
De esta forma, se busca reducir el sobreajuste utilizando los datos sintéticos como
regularizador al entrenar un modelo.

Este trabajo busca evaluar la mejor técnica de aumento de datos, las técnicas
tradicionales serán comparadas con otras técnicas más avanzadas basadas en es-
tad́ısticas como la inferencia Bayesiana.

A.3.2.1 Tradicional

El enfoque tradicional para el aumento de datos es aplicar pequeños cambios de la
serie original para generar los sintéticos. Recientemente, se ha aplicado el aumento
de datos con métodos similares a los aplicados en el procesamiento de imágenes.
Pero no todas las técnicas aplicadas a imágenes se pueden aplicar a series de tiempo
debido a las diferencias entre los tipos de datos.

Para este trabajo se utilizarán técnicas basadas en agregar ruido, desplazar las
observaciones y escalar la serie. Estas técnicas se describen a continuación:

1. Ruido. Desde la serie original, otras se generan agregándoles ruido blanco. El
ruido blanco es un proceso estocástico donde sus variables no están correla-
cionadas, una señal de ruido blanco tiene media cero. Luego, se genera una
señal de ruido blanco tomando valores aleatorios de una distribución normal
con µ = 0 y σ = 1, luego este valor se suma a la observación original, aśı se
obtiene la serie con ruido. Recuerde que µ es la media y σ es la desviación
estándar.

2. Desplazar. Esta función translada los valores por un factor de i pasos, es decir:
yt = yt+i ∀yt ∈ Y , donde Y es la serie de tiempo. Para estos experimentos
i ∈ [−5, 5].

3. Escalar. Esta función consiste en usar un factor k en la serie de tiempo, es
decir: yt = yt ∗ k ∀y ∈ Y , donde Y es el observado series de tiempo. Para
estos experimentos k ∈ [−0.5, 0.5].

Este trabajo busca evaluar la mejor técnica de aumento de datos, estas técnicas
serán comparadas con otras técnicas más avanzadas basadas en criterios estad́ısticos
(aumento de datos Bayesiano).
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A.3.2.2 Bayesiano

La inferencia bayesiana es una técnica de inferencia estad́ıstica basada en el
teorema de Bayes. El teorema de Bayes está estrechamente relacionado con el con-
cepto de probabilidad condicional. La probabilidad condicional de un evento A es
la probabilidad de que el evento ocurra sabiendo que ya ocurrió un evento B. Esta
probabilidad se escribe P (A | B), lo que significa probabilidad de A dado B. En
el caso de que el evento B no tenga efecto sobre la probabilidad del evento A, la
probabilidad condicional del evento A es simplemente la probabilidad del evento A,
es decir, P (A). A partir de esta definición, la probabilidad condicional se describe
como

P (A | B) =
P (A ∩B)

P (B)
, (A.1)

donde P (A ∩ B) es la probabilidad de que A y B ocurran al mismo tiempo, y
P (B) es la probabilidad de que ocurra B. El término teorema de Bayes es en
honor al reverendo Thomas Bayes, y también se le conoce como ley de Bayes. Este
teorema muestra la probabilidad condicional o probabilidad posterior, o simplemente
posterior de un evento A después de que B se observe en términos de la probabilidad
previa de A, la probabilidad previa de B y la probabilidad condicional de B dado
A. El teorema de Bayes se define de la siguiente manera

P (A | B) =
P (B | A)P (A)

P (B)
, (A.2)

donde P (A) es la probabilidad de que ocurra A, P (B) es la probabilidad de que
ocurra B, P (B | A) es la probabilidad de que ocurra B dado A y P (A | B) es la
probabilidad de A dado B. El teorema de Bayes se basa en incorporar distribuciones
de probabilidad previa P (A) para generar probabilidades posteriores P (A | B),
para mostrar cuán verdadera es una hipótesis, según la evidencia. La base de la
inferencia bayesiana proviene del teorema de Bayes, para aplicarlo a modelos se
hace la siguiente modificación a la ecuación anterior:

P (Θ | y) =
P (y | Θ)P (Θ)

P (y)
, (A.3)

donde y son observaciones y Θ es un conjunto de parámetros para un modelo,
entonces se definen los siguientes componentes:

• P (Θ) es el conjunto de distribuciones previas del conjunto de parámetros Θ
antes de que se observe y.

• P (y|Θ) es la probabilidad de y bajo un modelo.

• P (Θ|y) es la distribución posterior completa del conjunto de parámetros Θ que
expresa incertidumbre sobre el conjunto de parámetros Θ después de tener en
cuenta tanto el anterior como los datos.

• P (y) se define como
∫
P (y | Θ)P (Θ) dΘ.

Dado que generalmente hay múltiples parámetros, Θ representa un conjunto de
j parámetros que se pueden considerar aśı

Θ = θ1, θ2, ..., θj, (A.4)
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Con este enfoque, la inferencia bayesiana se puede utilizar para aplicarla a un
modelo de pronóstico para casos de dengue, por ejemplo, el SIR, y obtener una
distribución de probabilidad de sus parámetros.

La inferencia bayesiana permite obtener una distribución de parámetros de un
modelo, esta distribución se denomina posterior. Al tomar muestras de esta dis-
tribución, se pueden obtener simulaciones similares a las observaciones. En este
trabajo, el modelo utilizado para caracterizar los brotes de dengue es el modelo SIR.

El modelo SIR, proporciona información sobre la situación de los individuos
susceptibles, infectados y recuperados, en el contexto de los casos de dengue. En
este trabajo, sólo se utilizará información sobre individuos infectados.

Recordando el concepto de inferencia bayesiana basada en modelos, es posible
inferir la distribución de parámetros para generar datos similares a las observaciones.
Con esta distribución de parámetros, es posible realizar simulaciones y obtener datos
similares a los observados. La idea central de este experimento es utilizar estas
simulaciones para mejorar el rendimiento de una red LSTM, ya que cuantos más
datos, mejor será el rendimiento de la red.

Sin embargo, el modelo SIR da como resultado una sola curva, que representa
un solo brote epidémico, y las observaciones en forma de serie de tiempo se ingresan
como entrada en la red LSTM como un vector Y = [y1, y2, ..., yt] con t observaciones
semanales. Para realizar la inferencia mediante el modelo SIR, se debe extraer cada
pico de la serie temporal.

Un brote es el aumento significativo de casos en relación con los valores ha-
bitualmente observados. Cuando los brotes ocurren estacionalmente, se dice que
la enfermedad que los causa es endémica, como el dengue en Paraguay. De esta
manera, cada pico dentro de la serie temporal representa un brote.

Básicamente se trata de encontrar el máximo local en la serie de tiempo, ya que
un brote dura aproximadamente 40 semanas, ese es el valor de range que se utilizó
en el algoritmo. De 2009 a 2013, hay cinco picos o menos según la ciudad. Una vez
que se han identificado los picos, el siguiente paso es determinar el comienzo y el
final del brote. A esto se le llama encontrar el ancho del brote.

Luego, para cada ciudad, se lleva a cabo el proceso de búsqueda de picos y sus
anchos una vez que tenemos las observaciones en forma de brotes individuales se
pueden ajustar a un modelo SIR.

Aśı, se puede definir una versión modificada del modelo SIR para series de
tiempo que trabajen por temporadas, este modelo se denominará SeasonalSIR.
SeasonalSIR recibe una serie temporal, encuentra los brotes y el inicio y final de
cada uno, para cada brote se ejecuta el modelo SIR tradicional, cada brote se con-
sidera una temporada, una temporada con casos activos le sigue otra sin casos ,
para manejar esto, el modelo SeasonalSIR baja artificialmente el valor β a cero.
Con una tasa de infección de β ≤ 0, no se produce un brote. De esta manera, el
modelo SeasonalSIR puede devolver una serie de tiempo de casos de dengue multi-
estacional. El algoritmo 12 muestra cómo funciona la función +SeasonalSIR+,start
y end son vectores que tienen el comienzo y el final de cada temporada o brote re-
spectivamente, seasons es un vector con un ı́ndice para cada temporada de la serie,
β es un vector que contiene los valores de βs para cada temporada y γ es un vector
con los valores γs para cada temporada, SIR() ejecuta el modelo SIR habitual. Los
vectores inicio, fin y picos se obtienen de cada serie de tiempo que se va a ajus-
tar. Los vectores β y γ son los vectores que se obtendrán al realizar la inferencia
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bayesiana. La longitud de cada vector es igual al número de temporadas que tiene
la serie.

Function SeasonalSIR(inicio, fin, temporada, β, γ):
foreach temporada do

t = inicio− fin
TS ←− SIR(β, γ, t)

end
return TS

End Function
Algorithm 12: SeasonalSIR

Todas las técnicas propuestas anteriormente (agregar ruido, escala, desplaza-
miento, aumento de datos bayesianos) serán aplicadas a la base de datos de dengue,
antes de ser entrenadas con un modelo de aprendizaje automático, luego se evaluará
el desempeño de cada una y se comparará si existen mejoras en relación al modelo
sin datos aumentados.

A.4 Experimentos

En este trabajo, se han probado técnicas de agrupamiento de series de tiempo y
aumento de datos para mejorar el rendimiento de un modelo de aprendizaje profundo
para pronosticar los casos de dengue en Paraguay.

Para la representación, se seleccionaron 5 ciudades aleatorias pertenecientes a
cada grupo (Grupo 1: alta incidencia, Grupo 2: incidencia media, Grupo 3: baja
incidencia). Los experimentos se llevaron a cabo en las ciudades seleccionadas.

Para la realización de los experimentos se comparó el desempeño de las técnicas
tradicionalmente utilizadas para la predicción de series de tiempo (SVR, Random
Forest, LARS LASSO, LSTM), con el modelo de aprendizaje profundo LSTM de
mejor desempeño. Por lo tanto, se seleccionó LSTM como modelo de referencia,
es decir, modelo de referencia para los demás experimentos. Utilizando el modelo
LSTM, se buscó mejorar su desempeño. En los experimentos, el modelo de referencia
se denota como Single.

Luego, los modelos LSTM se entrenaron de diferentes maneras según cada en-
foque:

1. Agrupación de series de tiempos. Este enfoque buscaba mejorar el rendimiento
de la red entrenando el modelo LSTM en grupos en serie, teniendo aśı los
siguientes modelos:

(a) Departamento. El modelo LSTM se entrenó con las series agrupadas
según el departamento al que pertenecen según la división poĺıtica del
páıs.

(b) P áıs. El modelo LSTM se entrenó con todas las series del páıs.

(c) Cluster. El modelo LSTM se entrenó de acuerdo con la agrupación
resultante de las técnicas de agrupación. En este punto, se realizó un
estudio previo para determinar cuál es la técnica de clustering más ade-
cuada. El número de clusters a formar se determinó con el método de
Elbow y se probaron varias técnicas de clustering (k-means, jerárquico,
DBscan), cada una con un conjunto de métricas de distancia (Euclidean,
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Correlation, Pearson Correlation, Dynamic time warping) y los resulta-
dos evaluados utilizando la puntuación de silueta. Los mejores resultados
se obtuvieron utilizando agrupamiento jerárquico y correlación, con esta
técnica y métrica se formaron los algoritmos para entrenar este modelo.

Entre estos modelos, el que tuvo el mejor rendimiento general fue el modelo
Cluster. La mejora se observa especialmente en los grupos 1 y 3.

2. Aumento de datos. Este enfoque busca mejorar el rendimiento de la red au-
mentando la cantidad de datos generando datos sintéticos a partir de los datos
observados. Los modelos se formaron utilizando un enfoque básico e inferencia
bayesiana

(a) Enfoques básicos. Este enfoque consiste en aplicar pequeñas transforma-
ciones a los datos observados para generar nuevos, los modelos utilizados
fueron:

i. Ruido. Este modelo LSTM se entrenó con variaciones de ruido
aleatorias agregadas a las observaciones.

ii. Dezplazar. Este modelo LSTM se entrenó con variaciones aleatorias
de la serie desplazada.

iii. Escala. Este modelo LSTM se entrenó con variaciones de la serie
multiplicadas por un escalar aleatorio.

Entre estos modelos, el que tuvo el mejor desempeño promedio fue Scale,
sin embargo su desempeño es mucho peor que el modelo Cluster.

(b) Inferencia bayesiana. El modelo Bayesiano LSTM se entrenó con las
simulaciones obtenidas de la distribución de parámetros obtenidos del
modelo propuesto. El modelo es una versión modificada del modelo SIR
adaptado para varias temporadas.

El modelo Bayesian supera bastante a Scale, el mejor del enfoque básico, lo
que hace que el modelo Bayesian sea el mejor entre las técnicas de aumento
de datos.

Se ha demostrado que ambos modelos (Cluster y Bayesian) mejoran signi-
ficativamente el rendimiento de un modelo de pronóstico de series de tiempo de
aprendizaje profundo. El modelo Cluster no siempre es el mejor, especialmente en
las ciudades de los grupos 2 y 3, pero es el modelo con la mejora más significativa.
Bayesian es siempre el mejor modelo en todas las pruebas, pero tiende a sobreesti-
mar los casos. En problemas en los que un modelo debe ajustarse a una observación,
puede ocurrir el sobreajuste, lo que sucede cuando el modelo no se puede generalizar
porque no tiene suficiente información. Por tanto, estas técnicas pueden considerarse
métodos de regularización para evitar el sobreajuste.

A.5 Conclusiones y trabajos futuros

A.5.1 Conclusiones

El error cuadrático medio (RMSE) confirma que los modelos agrupados LSTM
mejoran la precisión en 19.48 ± 18.80% y LSTM con aumento de datos basado en
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Bayesiano mejora 16.86± 16.57%. La principal contribución de este trabajo son dos
técnicas que pueden mejorar el rendimiento de los modelos de series de tiempo al
combinar información de series de tiempo y datos meteorológicos similares.

A.5.2 Trabajos futuros

En base a los resultados obtenidos, a continuación se presentan algunos trabajos
futuros que se han identificado.

• Aplicar estas técnicas en un problema de clasificación de series de tiempo.

• Combina técnicas de clúster e inferencia bayesiana.

• Optimizar la agrupación de las series de tiempo diseñando más experimentos.

• Utilizar la inferencia bayesiana para obtener la estimación del número de casos
reales en otras enfermedades.

• Utilizar otros modelos modernos de aprendizaje automático para pronosticar
series de tiempo (Gated Recurrent Unit, Bidirectional recurrent neural net-
works, Deep transformer).

• Aplicar estos enfoques con otras enfermedades endémicas y transmitidas por
vectores.
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Dickey-Fuller test to check
stationarity

Before applying any transformation must be determined if a series is stationary or
not,a stationary time series is a stochastic process whose probability distribution at
a fixed time instant or a fixed position is the same for all time instants or positions.
Consequently, parameters such as mean and variance, if they exist, do not vary
over time or position. To check stationarity, Augmented Dickey–Fuller test (ADF
test) was used. The ADF test is a statistical significance test. That is, there is a
hypothesis testing involved with a null and alternative hypothesis and as a result
a test statistic is computed and p-values get reported. From the statistic test, an
inference can be made as to whether a given time series is stationary or not. Unit
root is a characteristic of a time series that makes it nonstationary. ADF test belongs
to the unit root test. Technically , a unit root is said to exist in a time series of
value of α = 1 in the below equation.

yt = αyt−1 + βXe + ε (B.1)

where yt is the value of the time series at time t and Xe is an exogenous variable.
The null hypothesis is α = 0. The presence of a unit root means the time se-
ries is non-stationary. ADF test basically consists of performing the unit root test
throughout the entire series. It is considered that with a p-value ≤ 0.05 the series is
stationary [37]. Only 14 cities with non-stationary series where found, these cities
were: Benjamin Aceval, Buena Vista, Chaco, General Aquino, Limoy Pueblo, Pozo
Colorado, R. I. 3 Corrales, Roque González De Santa Cruz, San Pedro, San Rafael
Del Paraná, San Roque González De Santacruz, Vaqueŕıa, Ybytymi, Ypane. To
make predictions more effectively in these cities, a differentiation (as mentioned in
chapter 2) must be performed first.

Table B.1 shows the detailed results of the ADF test.

Table B.1: Detailed results of the ADF test.

City p-value
1RO DE MARZO 0.0002
25 DE DICIEMBRE 0.0000
3 DE FEBRERO 0.0000
ABAI 0.0074
ACAHAY 0.0000
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Table B.1: Detailed results of the ADF test.

City p-value
ALBERDI 0.0080
ALTO VERA 0.0000
ALTOS 0.0004
ANTEQUERA 0.0000
AREGUA 0.0026
ARROYOS Y ESTEROS 0.0009
ASUNCION 0.0037
ATYRA 0.0014
AYOLAS 0.0001
AZOTEY 0.0000
BAHIA NEGRA 0.0000
BELEN 0.0000
BELLA VISTA 0.0020
BENJAMIN ACEVAL 0.0901
BORJA 0.0069
BUENA VISTA 0.0832
CAACUPE 0.0004
CAAGUAZU 0.0234
CAAZAPA 0.0002
CABALLERO ALVAREZ 0.0024
CAMBYRETA 0.0033
CAPIATA 0.0140
CAPIIBARY 0.0092
CAPITAN BADO 0.0000
CAPITAN MEZA 0.0000
CAPITAN MIRANDA 0.0000
CARAGUATAY 0.0000
CARAPEGUA 0.0008
CARAYAO 0.0020
CARLOS ANTONIO LOPEZ 0.0000
CARMELO PERALTA 0.0047
CARMEN DEL PARANA 0.0000
CECILIO BAEZ 0.0000
CERRITO 0.0402
CHACO 0.2990
CHORE 0.0000
COLONIA FRAM 0.0000
COLONIA INDEPENDENCIA 0.0000
CONCEPCION 0.0000
CORONEL BOGADO 0.0042
CORONEL MARTINEZ 0.0004
CORONEL OVIEDO 0.0001
CORPUS CHRISTI 0.0023
CURUGUATY 0.0007
DESMOCHADOS 0.0000
DR BOTRELL 0.0000
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Table B.1: Detailed results of the ADF test.

City p-value
DR. JUAN MANUEL FRUTOS 0.0072
EDELIRA 0.0002
EMBOSCADA 0.0036
ENCARNACION 0.0123
ESCOBAR 0.0000
EUGENIO A GARAY 0.0019
EUSEBIO AYALA 0.0009
FASSARDI 0.0000
FELIX PEREZ CARDOZO 0.0000
FERNANDO DE LA MORA 0.0064
FILADELFIA 0.0069
FUERTE OLIMPO 0.0000
GENERAL AQUINO 0.1280
GENERAL ARTIGAS 0.0000
GENERAL BERNARDINO CABALLERO 0.0001
GENERAL BRUGUEZ 0.0053
GENERAL DELGADO 0.0000
GENERAL DIAZ 0.0000
GENERAL MORINIGO 0.0125
GENERAL RESQUIN 0.0000
GUARAMBARE 0.0021
GUAYAIBI 0.0000
GUAZUCUA 0.0000
HERNANDARIAS 0.0001
HOHENAU 0.0000
HORQUETA 0.0043
HUMAITA 0.0000
ISLA PUCU 0.0000
ISLA UMBU 0.0000
ITA 0.0172
ITACURUBI DE LA CORDILLERA 0.0007
ITACURUBI DEL ROSARIO 0.0000
ITAKYRY 0.0000
ITANARA 0.0000
ITAPE 0.0318
ITAPUA POTY 0.0086
ITAUGUA 0.0059
ITURBE 0.0002
J A SALDIVAR 0.0015
JESUS 0.0000
JOSE DOMINGO OCAMPOS 0.0000
JUAN DE MENA 0.0000
JUAN E. OLEARY 0.0000
JUAN EULOGIO ESTIGARRIBIA 0.0001
JUAN LEON MALLORQUIN 0.0003
KATUETE 0.0093
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Table B.1: Detailed results of the ADF test.

City p-value
LA PALOMA 0.0006
LA PASTORA 0.0020
LA VICTORIA 0.0166
LAMBARE 0.0230
LAURELES 0.0000
LEANDRO OVIEDO 0.0000
LIMA 0.0000
LIMOY PUEBLO 0.2990
LIMPIO 0.0092
LOMA GRANDE 0.0009
LOMA PLATA 0.0155
LORETO 0.0000
LUQUE 0.0086
MACIEL 0.0000
MARIANO ROQUE ALONSO 0.0305
MAURICIO JOSE TROCHE 0.0000
MBARACAYU 0.0000
MBOCAYATY 0.0000
MBOCAYATY DEL YHAGUY 0.0000
MCAL. ESTIGARRIBIA 0.0067
MCAL. FRANCISCO SOLANO LOPEZ 0.0000
MINGA GUAZU 0.0003
MINGA PORA 0.0002
MOISES BERTONI 0.0000
NANAWA 0.0000
NARANJAL 0.0000
NATALICIO TALAVERA 0.0000
NATALIO 0.0000
NUEVA ALBORADA 0.0000
NUEVA COLOMBIA 0.0003
NUEVA ESPERANZA 0.0000
NUEVA GERMANIA 0.0000
NUEVA ITALIA 0.0156
NUEVA LONDRES 0.0000
OBLIGADO 0.0001
PARAGUARI 0.0000
PASO YOBAI 0.0000
PEDRO JUAN CABALLERO 0.0009
PILAR 0.0364
PIRAPO 0.0000
PIRAYU 0.0028
PIRIBEBUY 0.0001
POZO COLORADO 0.4970
PUERTO FALCON 0.0023
PUERTO PINASCO 0.0000
QUIINDY 0.0000
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Table B.1: Detailed results of the ADF test.

City p-value
R I 3 CORRALES 0.8594
RAUL ARSENIO OVIEDO 0.0000
REPATRIACION 0.0053
ROQUE GONZALEZ DE SANTA CRUZ 0.0904
SALTO DEL GUAIRA 0.0000
SAN ALBERTO 0.0001
SAN ANTONIO 0.0044
SAN BERNARDINO 0.0000
SAN CARLOS 0.0203
SAN COSME Y DAMIAN 0.0000
SAN ESTANISLAO 0.0012
SAN IGNACIO 0.0089
SAN JOAQUIN 0.0000
SAN JOSE DE LOS ARROYOS 0.0001
SAN JOSE OBRERO 0.0000
SAN JUAN BAUTISTA 0.0034
SAN JUAN DEL PARANA 0.0083
SAN JUAN NEPOMUCENO 0.0002
SAN LAZARO 0.0000
SAN LORENZO 0.0490
SAN MIGUEL 0.0000
SAN PATRICIO 0.0000
SAN PEDRO 0.2376
SAN PEDRO DEL PARANA 0.0069
SAN PEDRO DEL YCUAMANDIYU 0.0484
SAN RAFAEL DEL PARANA 0.0703
SAN ROQUE GONZALEZ DE SANTACRUZ 0.2042
SAN SALVADOR 0.0004
SANTA ELENA 0.0002
SANTA MARIA 0.0000
SANTA RITA 0.0020
SANTA ROSA 0.0000
SANTA ROSA DEL AGUARAY 0.0040
SANTA ROSA DEL MBUTUY 0.0009
SANTA ROSA DEL MONDAY 0.0000
SANTIAGO 0.0000
SAPUCAI 0.0133
SIMON BOLIVAR 0.0002
TACUARAS 0.0064
TACUATI 0.0003
TAVAI 0.0005
TAVAPY 0.0021
TEBICUARY 0.0000
TEBICUARYMI 0.0000
TEMBIAPORA 0.0000
TOBATI 0.0000
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Table B.1: Detailed results of the ADF test.

City p-value
TOMAS ROMERO PEREIRA 0.0001
TRINIDAD 0.0000
UNION 0.0000
VALENZUELA 0.0000
VAQUERIA 0.0622
VILLA DEL ROSARIO 0.0000
VILLA ELISA 0.0073
VILLA HAYES 0.0197
VILLA OLIVA 0.0000
VILLALBIN 0.0000
VILLARRICA 0.0025
VILLETA 0.0240
YAGUARON 0.0062
YATAITY 0.0015
YATAITY DEL NORTE 0.0000
YATYTAY 0.0000
YBY YAU 0.0000
YBYRAROVANA 0.0001
YBYTYMI 0.0884
YEGROS 0.0000
YGATIMI 0.0000
YGUAZU 0.0000
YHU 0.0091
YPACARAI 0.0000
YPANE 0.0531
YPEJHU 0.0000
YUTY 0.0000
ZANJA PYTA 0.0287

The ADF test can also be done visually, checking that the standard deviation
and the mean have a constant trend. Figures B.1 to B.15 show the visual analyzes
for the cities sampled in this work.
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Figure B.1: ADF test for San Lorenzo city.

Figure B.2: ADF test for Capiatá city.
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Figure B.3: ADF test for Caaguazú city.

Figure B.4: ADF test for Areguá city.
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Figure B.5: ADF test for Salto del Guairá city.

Figure B.6: ADF test for Choré city.
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Figure B.7: ADF test for Juan León Mallorqúın city.

Figure B.8: ADF test for Santa Rosa del Aguaray city.
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Figure B.9: ADF test for Quiindy city.

Figure B.10: ADF test for Eusebio Ayala city.
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Figure B.11: ADF test for Encarnación city.

Figure B.12: ADF test for San Pedro del Ycuamandijú city.
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Figure B.13: ADF test for Capitán Miranda city.

Figure B.14: ADF test for Yhú city.
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Figure B.15: ADF test for Santa Rita city.
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Extended clustering results

This appendix presents the details of the clusters formed with the hierarchical
clustering technique and that were used to train the Cluster model.

C.1 Clusters elements

The detail of the elements of each cluster can be seen in Table C.1.

Table C.1: Detailed elements of the clusters formed

Cluster Elements N° of elements
1 1RO DE MARZO, 25 DE DICIEMBRE, ANTE-

QUERA, AYOLAS, CABALLERO ALVAREZ, CAPI-

IBARY, CAPITAN MEZA, CARAYAO, CARLOS AN-

TONIO LOPEZ, CECILIO BAEZ, EUGENIO A GARAY,

ISLA PUCU, ITACURUBI DEL ROSARIO, ITURBE,

LIMOY PUEBLO, LORETO, MACIEL, NUEVA GER-

MANIA, SAN CARLOS, SAN COSME Y DAMIAN,

SANTA ROSA DEL AGUARAY, SANTA ROSA DEL

MBUTUY, VALENZUELA, VILLA DEL ROSARIO,

YATAITY DEL NORTE, YGUAZU, YHU

27
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Table C.1: Detailed elements of the clusters formed

Cluster Elements N° of elements
2 3 DE FEBRERO, ABAI, ACAHAY, ALTOS, AREGUA,

ARROYOS Y ESTEROS, ATYRA, BAHIA NEGRA,

BELLA VISTA, BENJAMIN ACEVAL, CAACUPE,

CAAGUAZU, CAAZAPA, CAMBYRETA, CAPI-

ATA, CAPITAN BADO, CAPITAN MIRANDA,

CARAGUATAY, CHORE, COLONIA INDEPENDEN-

CIA, DESMOCHADOS, DR BOTRELL, EMBOSCADA,

ENCARNACION, EUSEBIO AYALA, FASSARDI,

FERNANDO DE LA MORA, GENERAL ARTI-

GAS, GENERAL DELGADO, GENERAL DIAZ,

GUARAMBARE, HERNANDARIAS, HUMAITA, ITA,

ITACURUBI DE LA CORDILLERA, ITAPE, ITAPUA

POTY, ITAUGUA, J A SALDIVAR, JESUS ,JUAN E.

OLEARY, JUAN LEON MALLORQUIN, KATUETE,

LA PALOMA, LA PASTORA, LAMBARE, LAURELES,

LOMA GRANDE, LOMA PLATA, LUQUE, MARIANO

ROQUE ALONSO, MCAL. FRANCISCO SOLANO

LOPEZ, MINGA GUAZU, NATALICIO TALAVERA,

NUEVA ALBORADA, NUEVA COLOMBIA, NUEVA

ESPERANZA, NUEVA LONDRES, PEDRO JUAN

CABALLERO, PIRAYU, PIRIBEBUY, QUIINDY,

REPATRIACION, SALTO DEL GUAIRA, SAN AN-

TONIO, SAN BERNARDINO, SAN ESTANISLAO,

SAN IGNACIO, SAN JOSE OBRERO, SAN LAZARO,

SAN LORENZO, SAN MIGUEL, SAN PEDRO DEL

PARANA, SANTA ELENA, SANTA MARIA, SIMON

BOLIVAR, TACUARAS, TACUATI, TAVAPY, TEM-

BIAPORA, TOBATI, TRINIDAD, VILLA ELISA,

VILLA HAYES, VILLA OLIVA, VILLETA, YEGROS,

YPACARAI, YPANE, ZANJA PYTA

90
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Table C.1: Detailed elements of the clusters formed

Cluster Elements N° of elements
3 ALBERDI, ALTO VERA, ASUNCION, AZOTEY,

BELEN, BORJA, BUENA VISTA, CARAPEGUA,

CARMEN DEL PARANA, CERRITO, CORONEL

BOGADO, CORONEL OVIEDO, CORPUS CHRISTI,

CURUGUATY, DR. JUAN MANUEL FRUTOS, ESCO-

BAR, FILADELFIA, FUERTE OLIMPO, GENERAL

AQUINO, GENERAL BERNARDINO CABALLERO,

GENERAL BRUGUEZ, GENERAL MORINIGO,

GUAZUCUA, HOHENAU, ISLA UMBU, ITAKYRY,

JUAN DE MENA, LEANDRO OVIEDO, LIMA,

LIMPIO, MBOCAYATY DEL YHAGUY, MCAL. ES-

TIGARRIBIA, NANAWA, NATALIO, NUEVA ITALIA,

OBLIGADO, PARAGUARI, PILAR, PIRAPO, PUERTO

FALCON, RAUL ARSENIO OVIEDO, ROQUE GON-

ZALEZ DE SANTA CRUZ, SAN JOAQUIN, SAN JOSE

DE LOS ARROYOS, SAN JUAN DEL PARANA, SAN

PATRICIO, SAN PEDRO DEL YCUAMANDIYU, SAN

RAFAEL DEL PARANA, SAN SALVADOR, SANTA

RITA, SANTIAGO, SAPUCAI, TAVAI, TEBICUARY,

TOMAS ROMERO PEREIRA, VAQUERIA, VIL-

LALBIN, VILLARRICA, YAGUARON, YATAITY,

YATYTAY, YBY YAU, YBYTYMI, YPEJHU, YUTY

65

4 CARMELO PERALTA, CHACO, LA VICTORIA, POZO

COLORADO, SAN ROQUE GONZALEZ DE SAN-

TACRUZ, YBYRAROVANA

6

5 COLONIA FRAM, CONCEPCION, CORONEL MAR-

TINEZ, EDELIRA, FELIX PEREZ CARDOZO,

GUAYAIBI, HORQUETA, ITANARA, JUAN EULO-

GIO ESTIGARRIBIA, MAURICIO JOSE TROCHE,

MBOCAYATY, MOISES BERTONI, PASO YOBAI,

SAN JUAN BAUTISTA, SAN JUAN NEPOMUCENO,

SAN PEDRO, SANTA ROSA, SANTA ROSA DEL

MONDAY, TEBICUARYMI, UNION, YGATIMI

21

6 GENERAL RESQUIN, JOSE DOMINGO OCAMPOS,

MBARACAYU, MINGA PORA, NARANJAL, PUERTO

PINASCO, R I 3 CORRALES, SAN ALBERTO

8

C.2 Visualization of clusters

Table C.2 show the graphic representation of the time series that belong to the
same cluster.

Table C.2: Graphic representation of the time series of each cluster
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Cluster 1

Cluster 2

Cluster 3

Cluster 4
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Cluster 5

Cluster 6
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Appendix D

Details of the improvement
comparison between models

This appendix presents the details of the comparisons between the basic model
(Single) and its comparison with tested models in terms of percentage improvement
in RMSE. Table D.1 shows the percentage of improvement of the Single model in
relation to the Cluster model, and Table D.2 shows the percentage of improvement
of the Single model relative to the Bayesian model.

Table D.1: Analysis of the observed improvements of the Cluster model

Group City Single Cluster Improvement (%)

Group 1

San Lorenzo 0.1360 0.0510 62.5000
Capiatá 0.1334 0.0940 29.5352
Caaguazú 0.0266 0.0135 49.2481
Areguá 0.1201 0.1003 16.4863
Salto del Guairá 0.0259 0.0186 28.1853

Group 2

Choré 0.0075 0.0063 16.0000
Juan León Mallorqúın 0.0096 0.0096 0.0000
Santa Rosa del Aguaray 0.0060 0.0037 38.3333
Quiindy 0.0095 0.0099 0.0000
Eusebio Ayala 0.0101 0.0095 5.9406

Group 3

Encarnación 0.0028 0.0026 7.1429
San Pedro del Ycuamandijú 0.0033 0.0027 18.1818
Capitán Miranda 0.0031 0.0031 0.0000
Yhú 0.0017 0.0016 5.8824
Santa Rita 0.0021 0.0017 19.0476

Average improvement 19.48± 18.80
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Table D.2: Analysis of the observed improvements of the Bayesian model

Group City Single Bayesian Improvement (%)

Group 1

San Lorenzo 0.1360 0.0580 57.3529
Capiatá 0.1334 0.1046 21.5892
Caaguazú 0.0266 0.0152 42.8571
Areguá 0.1201 0.1112 7.4105
Salto del Guairá 0.0259 0.0202 22.0077

Group 2

Choré 0.0075 0.0061 18.6667
Juan León Mallorqúın 0.0096 0.0094 2.0833
Santa Rosa del Aguaray 0.0060 0.0058 3.3333
Quiindy 0.0095 0.0094 1.0526
Eusebio Ayala 0.0101 0.0090 10.8911

Group 3

Encarnación 0.0028 0.0021 25.0000
San Pedro del Ycuamandijú 0.0033 0.0032 3.0303
Capitán Miranda 0.0031 0.0030 3.2258
Yhú 0.0017 0.0016 5.8824
Santa Rita 0.0021 0.0015 28.5714

Average improvement 16.86± 16.57
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