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Summary

Nowadays, the technological progress of a constantly evolving world is related to the
unprecedented increase of collected data, with hundreds or thousands of features and
instances. As a result, feature selection has become an inseparable part of any prepro-
cessing for dimensionality reduction in machine learning. However, in this Big Data era
characterized by complex and heterogeneous datasets, most of the proposed feature se-
lection methods have focused on using a single feature evaluation measure on a unique
search space. In this study, a novel filter framework based on partition and interco-
operation (PART_FS) is proposed. In this approach, the search space is partitioned
into subspaces according to the type of information contained in the feature (i.e. indi-
vidual informative, synergistic and complementary). For the analysis of redundancy,
the strategy based on class separability in conjunction with Markov blanket property
is used. Synergy is evaluated using an information theory measure, while complemen-
tarity is evaluated using a consistency-based measure. To show the performance of
PART _FS, it was compared with five efficient cooperativeness-based feature selection
methods, FS_RRC, IIFS, FJMI, SAFE and RELAX_MRMR, on three artificial data
and twenty public datasets in combinations with seven classifiers. Experiment results
on both artificial and real world data demonstrate the superiority of PART_FS when
applied to a variety of problems with distinct characteristics. Hence, the partitioning
of the search space and the differential treatment on each subspace could better assess

the importance of the features in the preprocessing of complex high-dimensional data.

Keywords: Filter feature selection - Feature intercooperation - Feature grouping -
Information theory-based measures - Consistency-based measures - Class-separability

strategy.
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Resumen

A dia de hoy, el progreso tecnoldgico de un mundo en constante evolucion esta rela-
cionado con el aumento sin precedentes de los datos recopilados, con cientos o miles
de atributos e instancias. Como resultado, la selecciéon de atributos, se ha conver-
tido en una parte inseparable de cualquier preprocesamiento para la reducciéon de la
dimensionalidad en el aprendizaje de maquinas. Empero, en esta era del Big Data car-
acterizado por complejos y heterogéneos conjuntos de datos, la mayoria de los métodos
de Seleccién de Atributos propuestos se han centrado en utilizar una tnica medida de
evaluacion de atributos sobre un tinico espacio de busqueda. En este enfoque, el espacio
de busqueda es particionado en subespacios de acuerdo al tipo de informacién contenida
en el atributo (7.e. informativo individual, sinérgico y complementario). Para el anali-
sis de la redundancia se emplea la estrategia basada en la separabilidad de clases junto
con la propiedad de Markov blanket. La sinergia es evaluada mediante una medida de
la teoria de la informacion, mientras que la complementariedad mediante una medida
basada en consistencia. Para demostrar el rendimiento de PART_FS, el mismo fue
comparado con 5 eficientes métodos de Seleccién de Atributos basados en intercoop-
eraciéon, FS_RRC, ITFS, FJMI, SAFE y RELAX_MRMR, sobre tres conjuntos de datos
artificiales y una veintena de conjuntos de datos del repositorio UCI en combinacion
con siete clasificadores. Los resultados experimentales tanto sobre los datos artificiales
como también los del mundo real, demuestran la superioridad de PART _FS cuando es
aplicado sobre una variedad de problemas con caracteristicas diferentes. Por tanto, la
particion del espacio de bisqueda y el tratamiento diferenciado sobre cada subespacio
podria evaluar mejor la importancia de las caracteristicas en el preprocesamiento de
datos complejos de alta dimensionalidad.

Palabras clave: Filtro de Seleccién de Atributos - Intercooperation de Atributos -
Agrupamiento de Atributos - Medidas basadas en la Teoria de la Informacién - Medidas

basadas en Consistencia - Estrategia de Separacién de Clases.
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Chapter 1

Introduction

In classification tasks, a feature (i.e., an independent variable) is considered relevant,
irrelevant, or redundant based on the information it contains about the target concept
or class (i.e., the dependent variable).

Feature selection is defined as the method of finding a minimum set of relevant
features in order to minimize the error in the classification process with respect to a
given class.

In this regard, feature selection has become the focus of much of the research in
areas involving high-dimensional datasets. Among these areas are text processing, gene
expression and combinatorial chemistry (Sui, 2013).

A feature selection method has three components: the definition of the evaluation
criterion (e.g., the relevance of the features), the estimation of the evaluation criterion
(i.e., the measure) and the search strategies for generating subsets of candidate features.

Regarding the evaluation measures, several criteria have been proposed to evaluate
the features and determine their importance. It should be noted that based on the
evaluation criteria, the feature selection methods can be divided into wrapper, filter
and embedded.

In filter-type methods, the evaluation of the subset of features is carried out by
assessing the intrinsic properties of the data, such as distance, consistency, entropy
and correlation.

This strategy does not consider any relationship with the learning algorithm, so
they are much more efficient in terms of computational resources since they are executed
as a previous stage called preprocessing.

Although the literature offers a wide and varied range of filter-type attribute se-
lection methods, in most cases, it deals only with the identification of irrelevant and

redundant attributes, where an important aspect that is usually neglected is the com-



plementarity of the attributes (Guyon and Elisseeff, 2003; Chen et al., 2015) (also
known as (Zeng et al., 2015a) synergy or (Jakulin and Bratko, 2003a) interaction).

Interacting attributes are those that appear to be irrelevant or little relevant to
the class when considered individually, but when combined with other attributes, can
have a high correlation with the (Zeng et al., 2015b) class.

One motivation for the development of this thesis is that the interaction of at-
tributes has received considerable attention in recent times and is attracting more and
more attention from researchers (Zeng et al., 2015b,a).

Reasons is that over the decades, attribute selection methods have evolved from
simple univariate relevance ranking algorithms, through relevance-redundancy trade-
offs to more sophisticated approaches based on multivariate dependencies in recent
years.

This tendency to capture multivariate dependence aims to obtain unique informa-
tion about the class from what is defined in this study as inter-cooperation between
attributes.

Therefore, the aim of this thesis is to propose ways to detect, measure and identify
which associations between attributes collectively provide unique information about
the explained variable or case class and their implications in the search for a minimum

subset of relevant attributes.

1.1 Research Problems and Objectives

Feature selection remains and will continue to be an active field that is incessantly
rejuvenating itself to answer new challenges (Liu et al., 2010).

This doctoral thesis presents new discoveries in the field of feature selection through
a novel proposed method based on feature search space reduction and intercooperative

feature processing. In particular, the following problems are investigated:

o How to define and examine a multivariate dependency measure based on infor-

mation theory.

o How to develop a systematic summary and comparison studies to facilitate re-
search and application of feature selection techniques based on multivariate de-

pendencies.

o How to design a new feature selection method based on the use and exploitation

of multivariate dependencies.



1.1.1 Research objetive

Examine the categorical multivariate dependence through its detection, quantification
and characterization oriented to the feature selection process applied in the data mining

classification task.

1.1.2 Specific objetives

e Define and explore a measure of multivariate dependence based on information

theory such as Multivariate Symmetrical Uncertainty (MSU).

e Determine the limits of multivariate information measures in the most commonly

used search strategies in the Feature Selection process.

o Establish and characterize the notions concerning multivariate dependence in the

context of Feature Selection.

» Develop a systematic review of the state-of-the-art on feature selection heuristics

based on multivariate dependence detection and/or quantification.

o Devise a heuristic for attribute selection by taking advantage of multivariate

dependency detection.

1.2 Contributions

In this thesis work, different key aspects related to multivariate dependence in the
context of feature selection have been addressed. The most significant contributions of

this thesis are presented below:

o Definition and analysis of Multivariate Symmetrical Uncertainty (MSU) as a

measure of higher order information applicable to the Feature Selection process.

o Study of M SU performance under data densities with known patterns in practice

and with real-world datasets.

o Generic formulation and characterization of the notions regarding the feautre

selection assisted by intercooperation.

o A state-of-the-art review of feature selection heuristics based on multivariate
dependence summarizes the contributions of the different approaches found in

the literature. In addition, current problems and challenges are presented in



order to identify the most promising methods given the specific knowledge gaps

in the area.

o Proposal of a novel feature selection method based on feature search space par-
titioning and feature intercooperation. This method uses KMedoids for parti-
tioning into subspaces, as well as using information-based and consistency-based

measures to deal with inter-cooperative features.

o Development of a toolbox implemented in PYTHON to perform feature selec-
tion using multivariate dependency measures. The toolbox implements the main

methods based on feature intercooperation, in addition to the proposed method.

1.3 Thesis Organization

The core parts and chapters of this thesis are derived from articles published or sub-

mitted during the doctoral research. The remainder of this is organized as follows:

 In Chapter 2, an extension of the Symmetrical Uncertainty (SU for short) measure
called Multivariate Symmetrical Uncertainty (MSU for short) is proposed. This
chapter is derived from (Sosa-Cabrera et al., 2019) and highlights that convey

the core findings of the research are:

— Define and explore MSU as a correlation measure for multiple nominal vari-

ables.

— Introduce representativeness as desirable property of a sample from a nom-

inal variable.

— Prove that a non-representative sample under-estimates the actual value of
MSU.

— Calculate the sample size that assures representativeness at 1-a level of
probability.

— Show how MSU with its interaction detection can be applied to feature

selection.

o Chapter 3 presents a comprehensive survey of the state-of-the-art work on filter
feature selection methods assisted by feature inter-cooperation, which summarizes

the contributions of different approaches found in the literature. This chapter



is derived from (Sosa-Cabrera et al., 2023) and highlights that convey the core

findings of the research are:

— A comprehensive survey on feature selection methods assisted by feature

intercooperation is presented.

— Twenty seven filter feature selection methods that adopt this approach re-

viewed.

— Based on feature intercooperation perspective, issues and future research

directions are presented.

o Chapter 4 introduces a novel feature selection method called PART_FS based
on feature search space partition and feature intercooperation. This chapter is
derived from a submitted paper and highlights that convey the core findings of

the research are:

PART _FS employs KMedoids to partitioning the search space in subspaces.

PART_FS can deal with irrelevant, redundant, synergistic, and complemen-

tary features.

PART_FS apply measures both based-on information theory and consis-

tency.

PART_FS outperforms five competing methods based-on intercooperation

in terms of accuracy on twenty real-world datasets.

o Chapter 5 presents a preliminary summary of the main findings and discussion

of future research directions.

1.4 Publications

The main chapters of this proposed doctoral dissertation are derived from the following

articles published or submitted.

o Sosa-Cabrera, G., Gémez-Guerrero, S., Garcia-Torres, M., & Schaerer, C. E.
(2023). PART FS: A feature selection method based on partitioning and inter-

cooperation. Status: In review.

o Sosa-Cabrera, G., Gémez-Guerrero, S., Garcia-Torres, M., & Schaerer, C. E.
(2023). Feature selection: a perspective on inter-attribute cooperation. Interna-

tional Journal of Data Science and Analytics, 1-13.



o Sosa-Cabrera, G., Garcia-Torres, M., Gémez-Guerrero, S., Schaerer, C. E.,
& Divina, F. (2019). A multivariate approach to the symmetrical uncertainty

measure: application to feature selection problem. Information Sciences, 494,
1-20.

Publications by the author in related research topics included in this thesis are:

o Sosa-Cabrera, G., Torres, M. G., Guerrero, S. G., Schaerer, C. E., & Divina,
F. (2018). Understanding a multivariate semi-metric in the search strategies for
attributes subset selection. Proceeding Series of the Brazilian Society of Compu-
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Chapter 2

A Multivariate approach to the Sym-
metrical Uncertainty Measure: Appli-

cation to Feature Selection Problem

In this chapter we propose an extension of the Symmetrical Uncertainty (SU) mea-
sure in order to address the multivariate case, simultaneously acquiring the capability
to detect possible correlations and interactions among features. This generalization,
denoted Multivariate Symmetrical Uncertainty (MSU), is based on the concepts of To-
tal Correlation (TC) and Mutual Information (MI) extended to the multivariate case.
The generalized measure accounts for the total amount of dependency within a set of
variables as a single monolithic quantity. Multivariate measures are usually biased due
to several factors. To overcome this problem, a mathematical expression is proposed,
based on the cardinality of all features, which can be used to calculate the number of
samples needed to estimate the MSU without bias at a pre-specified significance level.
Theoretical and experimental results on synthetic data show that the proposed sample
size expression properly controls the bias. In addition, when the MSU is applied to
feature selection on synthetic and real-world data, it has the advantage of adequately
capturing linear and nonlinear correlations and interactions, and it can therefore be

used as a new feature subset evaluation method.

2.1 Introduction

In recent years, the huge advances in data collection and storage technologies have
caused the creation of large, high-dimensional, complex and heterogeneous datasets,

making the classification task more and more challenging. In general, when the di-



mensionality of a dataset increases, the complexity of the data and the number of non
informative features grow as well. Thus, the higher the dimension of the data, the
higher the risk of degrading the performance of the classifier.

Another important problem relies on the fact that not all the features have the
same importance in terms of information for the task to be performed. It is widely
accepted that according to the information that variables contain about the learning
task, features can be classified as irrelevant, relevant and redundant. In a nutshell, a
feature is said to be irrelevant if it contains no information about the concepts to be
learned, while a relevant feature does contain information about such concepts. Also,
a feature is considered redundant if the information it provides about the concepts
to be learned is already included in another feature or subset of features. Therefore,
irrelevant and some redundant features can be removed without degrading the learning
task (Hall, 1998).

Feature selection techniques have been successfully used in a wide range of appli-
cation areas, such as spam filtering (Méndez et al., 2019), recommender systems (Bag
et al., 2019a), consumer’s purchase intention (Bag et al., 2019b), etc. It is also notewor-
thy that feature selection faces new challenges, for example in data streaming (Palma-
Mendoza et al., 2018), big data (Palma-Mendoza et al., 2018), and multi-objective
approach (Kashef and Nezamabadi-pour, 2019).

The concept of entropy (Shannon, 1948) can be used as an indicator of uncertainty
in the data. In (Singh et al., 2017), an entropy-based method was proposed to compute
the weight of a given fuzzy formal concept. In fact, in multivariate data, the uncertainty
associated to the information contained in such data can be addressed by means of
either information granulation or multivariate approaches. In the first case, information
granules correspond to some level of abstraction of the data and, therefore, each granule
should be described by a specific property or concept (Héeppner and Klawann, 2008).
A method based on Galois connection is proposed in (Singh, 2018) to build the m-
polar fuzzy graph concept lattice that represents uncertainty in the features. In the
multivariate approach, entropy-based measures were extended to handle multivariate
data directly. In this context, several works have been proposed for analysis of time-
series signals. In (Ahmed et al., 2012), an empirical mode decomposition was combined
with multivariate sample entropy to describe the structural complexity of multivariate
signals even for non-stationary data, such as brain states measured through various
channels. The multivariate multiscale sample entropy was extended for long time
series in (Ni et al., 2013), so that it can reveal the complexity of multivariate biological

signals.



Entropy is also used in multivariate time-independent observations where uncer-
tainty is associated to the features (Arias-Michel et al., 2016) rather than to the data
observations. The multivariate mutual information (MMI) measure was introduced
to discover multivariate relationships in biological networks (Pham et al., 2012). The
MMI was also used for quantifying shared information in a multivariate network (Ball
et al., 2017). In addition, the change of MMI when adding or removing some common
randomness was studied (Chan et al., 2018). The work in this chapter is framed in the
scope of MMI for the discovery of dependencies between features.

In classification tasks, feature selection consists in finding the minimal set of rele-
vant features in such a way that the classification error is minimized. In order to identify
this optimal subset of features, several criteria have been proposed to evaluate the good-
ness of feature subsets. Based on the evaluation criterion, feature selection methods
are divided into wrapper, filter and embedded methods. Wrapper methods evaluate
the subsets of features by using the learner as a black box. This approach achieves
high accuracy since interactions between feature subsets and the learning model are
taken into account. Its main drawback is the computational cost, presenting a high
risk of overfitting. In contrast, filter strategies assess the quality of subsets of features
according to intrinsic properties of the data, such as distance, consistency, entropy and
correlation. This approach does not consider the interaction with the learning algo-
rithm; therefore, it is faster than wrapper methods but may yield lower classification
accuracy. Finally, embedded methods perform the feature selection during the induc-
tion of the classifier. The difference between wrapper and embedded methods lies in
the use of an intrinsic model building metric during the learning process.

Recently, many entropy-based filter strategies have been proposed, as in (Avdiyenko
et al., 2015; Garcia-Torres et al., 2016; Li et al., 2016; Shishkin et al., 2016a; Jesus et al.,
2017). Most methods define heuristically a criterion based on Mutual Information (MI)
to evaluate feature subsets. Some of these criteria are the joint mutual information
(JMI) (Yang and Moody, 1999; Bennasar et al., 2015), the conditional infomax feature
extraction (CIFE) (Guo and Nixon, 2009), and the minimum-redundancy maximum
relevance (mRMR) (Peng et al., 2005). A normalized variant of MI, reducing the
bias effect towards nominal features characterized by a high number of categories, was
proposed in (Hall, 1998) under the name of Symmetrical Uncertainty (SU). The SU
correlation measure detects a linear or non-linear association between two attributes.
Later in (Yu and Liu, 2004), a framework that uses SU was proposed to perform an
analysis of relevance and redundancy.

Despite the fact that, in general, previous works achieve competitive results on



real datasets, the use of bivariate measures ignores possible dependencies among more
than two features. In order to quantify such relationships, an extension of the MI was
proposed in (McGill, 1954) for three variables. The extension expresses the information
shared by all variables that is not present in any subset of these variables. Although
this measure was originally named interaction information, it is also referred to as co-
information (Bell, 2003). A later work generalized this measure to n variables (Jakulin
and Bratko, 2003b). Based on this, a real-world multivariate textual corpus analysis is
performed in (Shalizi, 2009). The analysis identifies positive and negative interactions
when certain words (features) are taken together; positive interactions provide more
information about the class than using either of the words on its own. From here
an improved feature selection method based on multivariate mutual information was
proposed.

The total correlation was presented as a generalization of the MI that measures the
information shared by any two or more variables (Watanabe, 1960). This measure is
also referred to as multi-information (Studeny and Vejnarové, 1998).

Several works have applied the multivariate approach to the feature selection prob-
lem. In (Doquire and Verleysen, 2012), the calculation of MMI was compared between
a group of features by using B-spline, NN-based and kernel-based estimators. Selec-
tion of features by applying a feature grouping approach based on MMI was proposed
in (Mohammadi et al., 2017). A novel measure of redundant information based on
co-information was introduced in (Ince, 2017). The measure calculates the pointwise
contributions to the MI which are shared unambiguously among the considered vari-
ables. Due to computational tractability, an MMI-based heuristic that considers up
to 3-way feature interactions was introduced in (Singha and Shenoy, 2018). This ap-
proach of limiting the number of feature interactions had also been used in previous
works (Kojadinovic, 2005; Brown, 2009). However, it was suggested in (Chen et al.,
2015) that ignoring higher-order terms may lead to misidentifying redundant features
as relevant due to pairwise approximation.

SU was extended to the multivariate case in (Arias-Michel et al., 2016), receiv-
ing the name of Multivariate SU (MSU). Since MSU is an entropy-based measure, it
suffers from the same types of bias as the SU. Moreover, in this case the bias can also
be exacerbated by the size of the feature subset. In fact, larger feature subset sizes
require more samples so as to be able to avoid sampling bias. In order to gain more
insights on MSU bias, where the mechanisms are not yet well understood, an extensive
experimental evaluation is needed. This motivates us to propose an analysis on the

effect that the number of features, the cardinality of the features and the sample size
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may have on MSU.

In sampling, undercoverage is a source of bias. It occurs when some members of
the population are inadequately represented in the sample. Although sample size and
coverage are two different issues, they are related because the probability of coverage
bias is high under a small sample and it decreases when the sample size grows. In
order to study how the MSU is affected by the coverage bias, the concept of total
representativeness is first introduced. This concept refers to the case in which there
is no coverage bias. Then, given a fixed number of features, the concept is used
to derive an expression that relates the sample size to the probability of the least
likely bin in the multinomial distribution induced by concatenating the features. Here,
an important achievement is that the required sample size for a desired assurance of
representativeness can be easily computed, leaving as unnecessary any previously used
“rules of thumb".

The novelty of this chapter can be summarized as: Multivariate Correlation is now
measurable through MSU for n categorical variables, where numerical variables can
also be included after suitable discretization. Furthermore, a procedure is derived to
determine sample size by controlling bias in the MSU measure to a required confidence
level. Also, the applicability of MSU to the feature selection problem is demonstrated.

It is worth noting that historically, correlation has only been measurable for two
numerical variables and has been limited to detecting linear relationships. For nonlinear
relationships and /or for analyzing more than two variables, dependencies are postulated
based on fitting observed data to specified models such as the various regression and
ANOVA methods. However, if none of the tested models seems adequate, there is no
guarantee that correlation is absent. In this context, MSU emerges as a new tool for
the detection of multivariate dependencies.

The rest of the chapter is organized as follows. Section 2.2 introduces the theoretical
foundations of this work, which are extended to multivariate concepts in Section 2.3.
Then, the potential sources of bias are presented in Section 2.4. The various data used
in this work are described in Section 2.5. Next, the experiments and discussion are in

Section 2.6. Finally conclusions and future work are described in Section 2.7.

2.2 Theoretical foundations

Let X be a categorical (discrete) random variable with possible values {x1, ..., 2} and
probability mass function P(X). The entropy H of the variable X is a measure of the

uncertainty in predicting the value of X, and is defined as:
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H(X):= —ZP(mi)logz(P(xi)), (2.1)

where P(z;) is the prior probability of the value x; of X. H(X) can also be interpreted
as a measure of the amount of information a discrete random variable X produces, or
the variety inherent to X.

Given another discrete random variable Y, the conditional entropy H (X |Y) quantifies
the amount of information needed to describe the outcome of X given that the value

of Y is known. It is defined as follows:

H(X[Y) = =>_ |P(y;) D Pxily;)logy(P(wily;)) | (2.2)

j
with P(z;|y;) the posterior probability of a value x; for variable X given that the value
of variable Y is y;.

Using entropy and conditional entropy, the mutual information (MI) (Quinlan,
1993) is introduced (also called information gain (IG)). MI measures the reduction in

uncertainty about the value of X when the value of Y is known, and is defined as:

MI(X|Y) = H(X) — HX|Y). (2.3)

Since MI measures how much the information provided by Y makes it easier to
predict the value of X, it can be used as a measure of correlation. It should be noted
that (i) if X and Y are independent then MI(X|Y) = 0, and (ii) if X and Y are fully
correlated then H(X|Y) = 0 and hence MI(X|Y) = H(X).

It can be shown that MI(X|Y) is symmetrical, a quite convenient property for a
paired measure. On the other hand, IG tends to increase its value when the number of
values of X and/or Y increases, that is, it is biased towards high cardinality features.
Therefore, MI has to be normalized with the entropies of the features in order to
compensate such bias. This measure, called Symmetrical Uncertainty (Press et al.,

1988) is expressed as:

(2.4)

st ) [T

(X) + H(Y)
Note now that (i) if X and Y are independent then SU(X,Y) = 0; and (ii) if X and
Y are completely correlated then IG(X|Y) = H(X) = H(Y) and so SU(X,Y) = 1.
Therefore, the SU values are restricted to the range [0, 1].
Since SU has only been defined for pairs of variables, it fails to detect interactions

among more than two features. It might fail in this detection even when applied
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successively to different pairs of features. This represents an important limitation, and

to overcome this problem, the measure is extended to the multivariate case.

2.3 Multivariate approach

In order to employ information theory to assess the dependency among features from
a subset, we use the concept of total correlation, which was first described in (McGill,
1954) and discussed in detail in (Watanabe, 1960). Given a set of random variables

X1,...,X,, the joint entropy of the n random variables is defined as
H(X1) ==Y ...> P(x1, ..., x,) logy[P(z1, ..., 7)) (2.5)

The total correlation C'(X.,) is defined by:

n

C(Xim) =) H(X;) — H(X1.n) (2.6)

i=1
It can be noted that for the case of n = 2, total correlation is equivalent to the
mutual information. Moreover, it is always positive and a near-zero value indicates that
all the variables are independent of each other, meaning that knowing the value of one
variable does not provide any information regarding the values of the other variables.
In order to generalize the symmetrical uncertainty to the multivariate case, it is

desirable that it has the following properties:

« The values have to be kept in the range [0, 1];

o Higher values in the measure have to correspond to higher correlation among
variables. A value of 0 implies that all variables are independent while a value of

1 corresponds to a perfect correlation among variables.

The multivariate approach, called Multivariate Symmetrical Uncertainty (MSU),

has a similar expression to (2.6):

._ o1 H(XG) — H(X10)

C(Xlzn)
=7t [ H(Xn]
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where f(n) corresponds to the normalization factor. In order to define such factor we

introduce the following lemma.

Lemma 2.3.1. Given the subset of random variables X1, ..., X,, then

n o1 H(X;)
Proof. Using the chain rule,

H(Xlzn) = ZH(XZ‘XD e 7Xi—1)
=1
=H(X;)+ ZH(XZ-|X1, X)) > H(XY).

=2

So, it has to be proven that
H(X1.) > H(X;),

for all i € [1,n], knowing that joint entropy is agglomerative.

Using the same rule, and taking into account that H(X) > H(X|X,..

i € [i,n], it is obtained
H(X1) < H(X)) + ...+ H(X,).

Combining (2.10) and (2.11), one has

and

Therefore, the inequalities (2.8) are obtained again

1 H(Xy.)
g |
n T X H(XG) ©

which concludes the proof.

(2.10)

. ,Xi_1> for

(2.11)

(2.12)

(2.13)

O

Denoting R,, by R, = [H(X1.,)]|/[>X, H(X;)], changing the sign of the inequality

and adding a value of one, then

1 n—1
0=1-1<1-R, <1-—-=2"+2
n n

14
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On the other hand, MSU(X.,) = f(n)[1 — R,] € [0,1]. So, it is obtained

1
T (2.15)

0=f(n)-0<f(n)[1 =R < f(n)-

n

Using the last equality, it is obtained f(n) = "5 and, therefore, MSU can be defined

as follows

MSU(X 1) = — [1—

7?:1 HX) (2.16)

Thus from (2.15), the MSU values are also in the range [0, 1]. The tendency to obtain

larger MSU values when some or all of the features have higher cardinalities still exists,

n—1

H(X1:n) 1

and the upcoming sections will attempt to isolate possible causes through experiments.

In contrast with linear correlation and other statistical measures of association that
are oriented to numeric data, the SU and the MSU are defined for both discrete numeric
and categorical random variables with a finite number of values. In addition, since SU
and MSU depend only on the probability mass function and not on the z; values, they
are invariant under translation and scale changes applied to any numeric X;, as long

as the probability weights remain the same.
Lemma 2.3.2. The MSU measure reduces to the SU if the number of features isn = 2.
Proof. Setting n = 2 in equation (2.16),

2 H(XLQ)
2-1| H(X)) +H(X,)
H(X,) + H(Xs) — H(X1, X5)

H(X1)+ H(X)

MSU(X.) =

(2.17)
=2

From the chain rule in (2.9), it can be written H(X;, Xs) = H(X1) + H(X5| X)),
therefore
H(X1) + H(X2) — [H(Xh) + H(X2[ X))
H(X,) + H(Xy)
H(X;) — H(X,| X)) (2.18)
H(X) + H(Xy)
= SU(X,y, Xp) = SU(Xy, X5)

MSU(X,) =2

The last results arise from equations (2.3) and (2.4) and from symmetry of the SU.
Thus it is observed that the SU and the MSU are actually the same measure. O
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2.4 Multivariate Cardinality and Sample Size

In order to apply MSU to finite real-world data, we study how the curse of dimen-
sionality affects it. When increasing the dimensionality of the data, the volume of the
search space expands exponentially and, therefore, the data become sparse. Another
consequence is that such sparsity is not uniformly distributed over the search space.
This may yield to some kind of bias in MSU.

Definition 2.4.1. Given a discrete random variable (RV) X, its Univariate Cardinal-

ity, denoted by | X|, is the number of possible distinct labels of X.
We extend the definition to a set of RVs as follows.

Definition 2.4.2. Given a set of discrete random variables X1, . .., Xy its Multivariate

Cardinality is the number of possible label combinations among all features. That is
d
i1 [ Xl

Note that both univariate and multivariate cardinality types provide an indication
of the diversity of information that discrete RVs contain. We see that for entropic
measures this diversity has a parallel with the measure of spread in statistics: given
a sample S from a discrete RV, the required sample size to be useful for analysis and
prediction purposes is calculated as a function of the standard deviation, which is a
measure of dispersion of the numeric values of the RV.

Standard deviation is not defined for a categorical variable, but the cardinality is
an expression of its diversity of categorical labels. Thus, when we work with categorical
variables a few analogies arise, as shown in Table 2.1, and we claim it is reasonable to
expect that a relationship exists between sample size and cardinality. For the moment,
in the table the claim is written as a question that will be answered in later subsections.

When working with a sample of data it is very important that it be representative to
accurately reflect the entire population. If so, the sample values of the numeric RV are
spread around the mean in a way that resembles the population’s spread. Similarly, in
the non-numeric case it is important that all or most existing categories be represented
in the sample (Schouten et al., 2009; Shlomo et al., 2012), so that cardinality in that
sample resembles that of the population. With this motivation the following definition

is introduced.

Definition 2.4.3. Let X be a discrete random variable with finite univariate cardinality
| X|, and let S be a sample of m subjects of X. The sample S is said to be Totally
Representative with respect to X if and only if each of its |X| labels is present in the

sample at least once.
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Table 2.1: Analogies between Numerical and Categorical Variables for Sample Size m

Continuous and Discrete Nominal and Ordinal
numerical variables categorical variables
Dispersion measures defined Entropy measures defined
Standard deviation o measures the | Cardinality |X| measures the diver-
dispersion of numeric values sity of categorical labels
m is a function of o Is m a function of | X| ?

We wish that sample values spread | We wish to get a sample that re-
around the mean in a way similar to | sembles the entropy (diversity) of the
population spread feature in the population

To resemble population spread: | To resemble population diversity:
make sure sample is selected through | get each value of feature represented
correct randomization in the sample

We now turn to deriving important properties associated to representativeness.
Later on, these properties will be used to pursue a way of ensuring representativeness

through proper sample size, and inducing a more stable MSU behavior.

2.4.1 Sample histogram

Given a sample from a discrete RV, the frequencies of all its categories can be repre-
sented in a histogram. In the case of a subset of features a histogram can be used for
each RV; or the grouping property (Singh and Gani, 2015) can be used to agglomerate
the RVs. In this case it suffices to consider a single sample histogram associated to the
concatenated values that result after applying the concatenation operation to all RVs
as seen in Section 2.3. For instance, given three binary RVs X, X5 and X3, their con-
catenation X has k = 23 = 8 possible outcomes. Furthermore, the resulting outcomes
follow a multinomial distribution with probabilities implied by the underlying X, X,
and Xj; if the three features are independent then the multinomial is a “flat" density
with all outcomes equally likely. Now the sample histogram can be formally defined as

follows.

Definition 2.4.4. Let X be a discrete random wvariable of k possible outcomes with
probabilities (p1, pa, - .., pr). Let {wy,wa, ... wi} be the set of corresponding outcome
counts when a sample of size m is taken from X, so that ¥ w; = m. Then, the

sample histogram of X is defined as the k-tuple (wy,ws, ..., wg).

A sample histogram may or may not have all k possible labels represented. In a

sample, lack of representation of an outcome — producing some empty buckets or bins
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in the histogram — is generally unanticipated. In such case the calculation of MSU

may be biased; we give a specific name to this situation.

Definition 2.4.5. Given a sample histogram (wy,ws, ..., wy) from a multinomial dis-

tribution, the sample is said to be extreme if w; = 0 for at least one 1.

Clearly, if sample size m is smaller than the number of buckets k, then we have
an extreme sample. Intuitively, as m increases, the probability of getting an extreme
sample decreases.

In the interest of guarding ourselves against extreme samples, it is convenient to
derive a way to minimize the probability of getting an extreme sample by finding a

suitable sample size m.

Lemma 2.4.1. Let S,, be the space of all sample histograms built from samples of size
m from a multinomial distribution with k possible outcomes, and let Z be the count of
Os in any one of these histograms. Then the values of Z partition S,, into k disjoint

subsets.

Proof. Let Z; be any value of Z. This value groups the set of sample histograms having
Z; buckets with a count of 0. A sample histogram having this count cannot belong
to any other subset of the partition, because it would then have a different number of

buckets with 0 count. Hence, the k subsets are disjoint. O]

The random variable Z has k possible values 0, 1, ..., Kk — 1. The case Z=0
corresponds to non-extreme or representative samples. The value Z = k, or all buckets
at 0 count, never occurs because the sum of observed frequencies in the multinomial
must equal the sample size m.

The lemma allows us to separately compute the probability of each partition of

Sm: now these probabilities are additive because they refer to disjoint subsets.

2.4.2 Bias caused by an extreme sample

Note that when sampling m times from a categorical variable X having k labels, the
actual frequency counts f; are used to estimate the probabilities p;. Using the “hat'

notation to represent an estimate, p; = f;/m for all i, where

> fi=m (2.19)

What happens when one of the f; is zero, that is, an extreme sample is obtained

Equality (2.19) still holds, but one or more of the non-zero p; are overestimated because
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this particular sample, by pure chance, has loaded some buckets more heavily at the
expense of the empty bucket. This often occurs in practice when the sample size is
too small, or when there is a group of non-respondent individuals all belonging to the

missing category, the analyst being unaware of this.

Lemma 2.4.2. Let X be a categorical random variable with entropy H(X) as defined
in equation (2.1), and let S be a sample of m observations of X. Suppose label L
of the variable is missing in the sample, that is, only k — 1 distinct labels of X are
found in S. Then, the estimated entropy fI(X) computed from the sample using the
above estimation procedure, approximates the true entropy H(X) with a bias that is a

function of the missing label probability py .

Proof. When a label is missing in a sample of size m, some or all of the other labels
appear more frequently. That is, on average each bucket will attract extra instances,
its observed frequency becoming greater than the true mp; by an amount proportional
to p; itself. Thus, assume that each non-empty bucket receives an increase in frequency
d; where Y d; = pr; the estimated probability is then p; = p; +d; for each i # L. Then,

taking expectation over the density of X,

EH(X)] = - > (i + d;) log(pi + d;)

i#L
= 3 (i + i) oglpi(1 + )
AL Di
— 3 (pi+ d)[log(pe) + log(1 + 2]
1#£L Di
== [Z pilog(p;) + Z d;log(p;) + Z(pz +d;) log(1 + %)
i#L i#L i£L Di
= - Zn:pi log(pi) — | dilog(p;) + Y (pi + d;) log(1 + Z) - DL log(pL)]
i=1 i£L i£L i
— H(X) + |pr log(pr) — X dilog(pi) — 3 (pi + ) log(1 + o)

i#L i£L pi
(2.20)

Thus the bias is the expression in brackets, where the term pylog(pr) contains the
probability of the missing label. Note the d;’s are also related to the same probability,
since they add up to pr. This completes the proof. O

The following example explores how bias behaves when a bucket is missing.
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Exzample. Suppose random variable X has four possible values with probabilities
{0.12, 0.18, 0.40, 0.30} respectively. Also, suppose that category L was not observed or
represented on the entire sample (where L € {1,2,3,4}). Let p; be the probability of
the missing bucket. Following the reasoning of the Lemma, p;, can be distributed among
the remaining cells, increasing their frequency by an amount d;. This amount can be
made proportional to the other buckets’ respective probabilities; thus if for example
the category whose probability equals 0.18 is missing, apportion 0.18 to increase each
of the other three probabilities:

dy = (0.18) p1/(p1 + p3s +pa) = (0.18) p1 /(1 — p2)
dy = (0.18) ps/(1 — p2)

That is, d; = pr, p;/(1 — pr) is the appropriate assignment for bucket i. With this
allocation pattern, the expected bias is calculated by constructing Table 2.2. In each
table section, the missing bucket probability appears in bold face.

In Table 2.2, the expected value of bias obtained by employing equation (2.20)
is presented as a function of the missing bucket probability. To test how bias would
behave under different probability densities, this table is calculated again assuming a
very unbalanced density {0.03, 0.04, 0.05, 0.88} and then assuming a nearly uniform
density {0.22, 0.24, 0.26, 0.28} — for brevity, these calculations are not shown. The
three graphs are displayed in Figure 2.1.

Summing up, an extreme sample that misses a bucket with large probability py,
tends to cause a bias of large absolute value when estimating H(X). Correspondingly,
if the probability of a missing category is small then the resulting bias will tend to be
small.

Also notice that the size of the bias can be important with respect to the true
entropy (1.8622 for the first example, applying equation (2.1)). In the rest of the

subsection it is explored how this affects estimation of the MSU.

Definition 2.4.6. Consider the ratio R = X1/ X5 of two random variables X1 and X5.
Let X1 and X, be estimates obtained from sample data. The natural estimate of R
is defined as the ratio of estimates, R = )21/)52.

It is known that the expectation of a natural estimate, that is, the ratio of expecta-
tions, is only a first approximation to the true expectation of the ratio (Curtiss, 1941);

but the natural estimate is often used in practice for simplicity. Let us now extend the
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Table 2.2: Expected bias in H(X) as a function of py,

i p L d dlog(p) (p+d)log(l+ %) prlog(pr) Expected Bias

1 012 1 0 0 0 -0.36707
2 018 1 0.02455 -0.06072 0.03772321
3 04 1 0.05455 -0.07211 0.08382935
4 03 1 0.04091 -0.07106 0.06287201
-0.347605196
1 012 2 0.02634 -0.08058 0.04189817
2 0.18 2 0 0 0 -0.44531
3 04 2 0.0878 -0.11607 0.13966058
4 03 2 0.06585 -0.11439 0.10474543
-0.420578789
1 012 3 0.08  -0.24471 0.14739312
2 018 3 0.12  -0.29687 0.22108968
3 04 3 0 0 0 -0.52877
4 03 3 0.2 -0.34739 0.3684828
-0.376760476
1 012 4 0.05143 -0.15731 0.08821254
2 018 4 0.07714 -0.19085 0.13231882
3 04 4 0.17143 -0.22662 0.29404181
4 03 4 0 0 0 -0.52109

-0.460885953

above Lemma’s result to this natural estimate, employed as a first approximation to

MSU(X}.,) in the presence of a sample.

Lemma 2.4.3. Let S be a sample of m observations from the categorical random
variables Xy, ..., X,. Suppose one of the labels is missing in the sample for a variable
X;, where j € [1,n], causing the estimation of H(X;) to be biased. Then the natural
estimate R of MSU(X;.,) obtained by direct substitution of each entropy by its estimate

s also biased and

n E(I:[(){lzn)) ]< n [1 H(Xln)] (2.21)

= T B Ao S a1 [T EL A

A

Proof. Let B be the bias in the estimation of H(Xj), so that E[H(X;)] = H(X;) + B.
Recall from the previous lemma that B > 0. Working with the left hand side numerator
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Figure 2.1: Bias in estimated H as a function of missed category probability.

in (2.21) and using the chain rule in (2.9), one has

Similarly, working with the corresponding denominator in (2.21),

n n

P [ﬁ;mm} S BIA(X)] = Y H(X) + B (22

=1 i=1

Substituting both expectation results on the left hand side of (2.21),

n_ [, _BHXw) | _ n H(X1,) + B
i oo

~ 1— 2.24
n—1 (X0, H(X))) n—1 L H(X,)+B (224)

Now given two positive numbers a, b such that a < b, then for any positive number ¢

it is easy to prove that a/b < (a + ¢)/(b + ¢) with equality holding only when a = b.
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Recalling Lemma 2.3.1, it is known that H(Xy.,,) < > 7, H(X;). Thus

H(X1n) _  H(Xin) + B
i H(XG) = YL H(X:) + B
n ll_ H(X1.,) ] > n [1  HXy,)+B (2.25)
MSU(Xy.,) > E(R)

and the proof is complete. O

2.4.3 Sample size m for representativeness

As seen, an extreme sample can bias the natural estimate of the MSU; therefore, a
totally representative sample should be sought for whenever possible. It is not possible
to completely avoid an extreme sample, but it is worth trying to reduce its probability
to an acceptable level. For a multinomial density, if outcome count W; in the sample
histogram is observed over m trials, then the expectation and the variance are F(W;) =
mp; and V (W;) = mp;(1 — p;) respectively (Thompson, 1987).

Since the density type is multinomial, it is possible to establish a 1 — « (say 95%)
confidence interval that the observed frequency w; will be close to its expected value
mp; and away from zero (a zero frequency implies an extreme sample). This can be
done by imposing the condition that 0 should be outside of the confidence interval.

A confidence interval for W; at the 1 — « level can be constructed by noting that
the observed count w; estimates the “true' count E(W;). Hence, using the normal

approximation, the following inequalities should hold with probability 1 — a:
—2a/2\|V(IW;) S w; — E(W;) < 202\ V(W5) (2.26)
for a two-tail interval, and
—za\/ V(W;) < w; — E(W;) (2.27)

for a left-sided one-tail interval. Because we are trying to get 0 into the left tail with
probability «, it makes sense to use the one-sided confidence interval. By transposing

E(W;) and then adding the greater than zero condition,

0 < E(W;) — za\/V(IW;) < wy,
(2.28)
0 < mp; — zoympi(1 — p;)
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Solving for m one arrives at

I —p;
m>z2- L
Di

For a 95% one-sided interval, z, is 1.645, the standard normal distribution value

Vi (2.29)

leaving a tail with area equal to 0.05.

Note that having a multinomial with all outcomes equally likely, in (2.29) the
recommended sample size m will stay constant for all buckets. If, however, there are
unequal p; values, m will attain its largest value at the smallest p; (which can be called
the least likely bucket), and this becomes the recommended sample size.

Table 2.3: Sample size m for various multivariate cardinalities
assuring total representativeness at 1 — « level.

Univariate ~ Multivariate Di m m
Cardinalities Cardinality in each for for
k bucket «a=0.05 «a=0.01

2,2,2 8 0.125 19 35
2,2,3 12 0.0833 30 25
2,2, 4 16 0.0625 41 75
2,2,5 20 0.05 52 95
2,3,3 18 0.0555 47 85
2,2,2,3 24 0.0416 63 115
2,2,2,4 32 0.03125 84 154

Referring back to the X, X5 and X3 example at the beginning of section 2.4.1, with
univariate cardinalities of 2 in each RV, there are 8 possible equiprobable outcomes so
that p; = 1/8 for all i. Applying (2.29) it is obtained

1-1
m > (1.645)* —23 = 18.94 ~ 19 (2.30)

ool

Thus, a sample of size 19 gives 95% confidence that this sample histogram will not
bring an extreme sample, that is, the sample will be totally representative. Table 2.3
displays a few examples with various univariate cardinalities at source features, and
recommended m values for one-sided 95% and 99% assurance of total representative-

ness.

2.4.4 A simplified empirical expression

The example shown in equation (2.30), with bucket probability p; = 1/8, reminds us

that p; is actually the inverse of the multivariate cardinality of the group of features
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— the product of all cardinalities. Denoting this product by m, and substituting in
equation (2.29) one has

m>zil_pi Vi
Di
2.31)
1—(1 (
:zii( /m) :zi(w—l)
1/m

Setting the probability of extreme sample to a very small value, say o = 0.001,
induces a conservative (or larger) sample size. Under that condition, normal density
tables give z2 = (3.09)? and thus

m > (3.09)*(r — 1) ~ 107 (2.32)

This is a simplified way to obtain the sample size. It agrees with a first successful
attempt at finding sample size during early runs of experiments, in a way similar to
Figure 2.3 in the Computational Results below. Let us name equation (2.32) as “the
empirical expression 107". Being on the conservative side allows for robust results even

under noisy data, as it will be visualized in that.

2.4.5 Remarks

A multinomial density with unequal p; values will arise when one or more categories
of an underlying feature X; have uneven probabilities. In such an event, the correct
approach is to calculate the sample size for the least likely bucket, that is, the lowest
p; value in the multinomial density under consideration. The reason being that the
frequency observed in this bucket tends to be low, requiring a larger m to pave the way
for representativeness.

In Table 2.3 relatively low univariate feature cardinalities are shown, since this is
usually the situation when dealing with categorical variables — perhaps because the
human mind is comfortable handling only a few nominal categories. Often, instead of
using many categories man tends to develop numeric measures.

The initial assumption of independence of the original or source features is just a
special case. In the case of independent features, knowing the values of one or more
features does not make it any easier to predict the values of the rest of the features;
this is a situation of maximum entropy. Partial dependencies, however, imply that
some extra prediction capability is given; at an intuitive level this means that smaller
sample sizes would suffice. This matter is work to be pursued in future.

In this section it was shown that the multivariate cardinality of a set of features

25



induces a multinomial probability density for the combined values of those features
when taking a sample of size m. From here we have been able to determine the sample

size m required to assure total representativeness with a desired probability level.

2.5 Data

A variety of datasets are employed in this work, depending on the aim of each experi-
ment. The effectiveness of MSU under different scenarios and its bias are first analyzed
and evaluated using synthetic datasets, which provide the benefit of a controlled en-
vironment for analyzing strengths and limitations. These datasets also lead to the
discovery of the empirical expression 107 given as equation (2.32), and are used to
analyze the goodness of that expression. Then, the application of MSU to the feature

selection problem is evaluated on benchmark data widely used in the field.

2.5.1 Data for MSU effectiveness analysis

Synthetic datasets are used to study the performance of MSU on a variety of scenarios.
The dataset is generated following the guidelines presented in (Kononenko, 1995).

In particular, the data is generated by considering, as classification rule, the XOR
function and the target concept introduced in (Kononenko, 1995) which will be referred
to as Kononenko’s method (KM) from now on.

When the XOR function over 2 features equals the value of a third feature (for
instance the class), this can be used to test for detection of a multivariate functional
dependency. This target concept is interesting because either feature has no separation
power by itself; however, the two features are informative when considered together.
Therefore, any algorithm that does not consider multivariate functional dependencies
between features can fail on the task of selecting both features.

XOR is extensible, whereby the class may be a function of £ non-redundant at-
tributes. The class cannot be expressed as a function of a subset of those k attributes
without losing its essential behavior. For our experiments, we only employ the 2-
attribute version of XOR for the sake of simplicity.

KM also allows to generate equally informative features despite each having different
numbers of values. This is done by joining the values of the features into two subsets:
{1,....,(Vdiv2)} and {(V div2 + 1),...,V}. The probability that a value belongs
to a subset depends on the class, while the selection of a particular value of a subset
is random from the uniform distribution. The probability that the value of a feature

belongs to a subset is defined as:
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1
PG el (g} 1) =] i+kC,
iR

where C' is the number of class labels, 7 is an integer indexing the possible class values

ifimod2=0

if i mod 2 #£ 0

{c1,...,¢}, 7 is the value of the feature, and k determines how informative the feature
is. A higher value of k indicates a stronger level of association between the feature and
the class, making the feature more informative. However, as reported in (Kononenko,
1995), the bias of MI is not sensitive to the value of k and, therefore, all experiments

in this work use k£ = 1.

2.5.2 Data for benchmarking MSU at feature selection

In order to assess MSU in the feature selection problem, four synthetic datasets widely
used in feature selection literature are employed. The first dataset, Corral (John et al.,
1994), contains six Boolean features (A0, Al, B0, Bl, I, R) and a Boolean class )
defined by ) = (A0 A A1) vV (BO A B1). Features A0, A1, BO and B1 are independent
to each other, feature I is uniformly random, and feature R matches the class label
75% of the time. Therefore, the optimal subset includes A0, Al, B0 and B1.

The next three datasets are referred to as the Monk’s problem (Thrun et al., 1992),

described by six nominal features:
» Head-shape (a;) € round (1), square (2), octagon (3)
« Body-shape (az) € round (1), square (2), octagon (3)
o Is-smiling (a3) € yes (1), no (2)
« Holding (a4) € sword (1), balloon (2), flag (3)
 Jacket-colour (a5) € red (1), yellow, green (2), blue (3)
» Has-tie (ag) € yes (1), no (2)
The concepts to learn are the following:

o Monk-1: (head-shape = body-shape) or (jacket-colour = red). This concept is

difficult to learn due to the interaction between the first two features.

o Monk-2: Exactly two of the features have their first value. This is a hard problem
because of the pairwise feature interactions and the fact that only one value of

each feature is useful. Note that all six features are relevant.
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o Monk-3: (jacket-colour = green and holding = sword) or
(jacket-colour # blue and body-shape # octagon). This dataset has 5% class

noise (with label reversed).

In addition, popular real-world datasets are selected. A summary of these datasets
including the significance level o associated to the respective sample representative-
ness is shown in Table 2.4. The first column refers to the dataset name. Next column
indicates the sample size m followed by the number of features n. Then, the multi-
variate cardinality of the data is given. The last column presents the implied « value
when solving in (2.29) for z,, under the given m and the given multivariate cardinality.
Many « values are relatively high, due to small sample sizes compared to their respec-
tive multivariate cardinalities. This implies that their datasets face higher probabilities

of extreme samples when they are run.

Table 2.4: Summary of the real-world data
assuring total representativeness at 1 — « level.

Dataset m n MC «
Haberman 306 3 24 1.3e —4
Balance Scale 625 4 81 0.003
Iris 150 4 144 0.153
Nursery 12960 8 12960 0.159
Diabetes 768 8 1536 0.240
Heart StatLog 270 13 1024 0.304
Glass 214 9 2304 0.380
Heart H 294 13 18432 0.450
Breast Cancer 286 9 299376 0.488
Wine 178 13 746496 0.494
Sonar 208 60 2097152 0.488
Creadit A 690 15 8294400 0.496
700 101 17 13107200  0.499
Lymph 148 18 28311552  0.499

2.6 Computational results

The set of experiments carried out in this chapter have the following objectives. The
first experiment demonstrates MSU’s ability to measure multivariable interactions.
The second and third sets of experiments aim at determining what factors cause bias

in MSU and how bias can be controlled. The fourth set explores MSU as an aid for
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feature selection. In particular, in order to achieve these objectives, experimentation

is performed as follows:

1. Analyze the ability of MSU to detect interactions. To this aim, experiments are

performed in two scenarios:

e Scenario 1. Using the KM, compare the values of MSU for two features and
the class with values of SU for each feature with respect to the class.

e Scenario 2. Using a XOR rule, study whether MSU is able to capture the

interaction of features.
2. Analyze the bias of MSU due to the following factors:

o (Cardinality. Examine the behavior of MSU when varying the cardinality of
the features. In this experiment the subset consists of two features — one
irrelevant and the other individually informative — and the target rule is
KM.

e Dimensionality. This experiment considers the XOR scenario and computes
the MSU when adding irrelevant and individually informative features. The
robustness of MSU is also analyzed by adding the following noise levels: 5,
10, 15, 20 and 25 percent.

o Sample size. The previous experiment is repeated with a small sample size.

3. Analyze MSU behavior with a calculated sample size: Expression 107 in equation
(2.32) is used to calculate the minimum sample size to avoid extreme samples

with about 0.999 confidence. In this scheme the following studies are carried out:

e In the XOR scenario, in which irrelevant as well as individually informative

features are added, report:

— The population or real MSU values against those calculated with the

sample size given by 10m.

— The robustness of MSU in the presence of noise at the 5, 10, 15, 20 and

25 percent levels.

e Compare the population MSU value with the MSU for various combinations

of feature types.
4. Assess MSU applied to feature selection:

« With synthetic data, the scenario allows to assess MSU in a controlled en-

vironment.

29



o With real-world data, MSU is evaluated as a new alternative in feature

selection.

In the next four sections, each experiment is presented in detail.

2.6.1 Analyze the ability of MSU to detect interactions

In order to assess the capability of MSU to detect interactions among features, two
scenarios are considered. In the first one, the results of SU on informative and irrelevant
features are compared with the results obtained by MSU on the same variables. In
the second scenario, attention is focused on the capabilities of MSU to capture the

interaction between features.

2.6.1.1 Scenario #1

The aim of this experiment is to compare the results of MSU on two features, one
informative and one irrelevant, with the result obtained by SU on the same features
with respect to the class. In all cases the feature cardinalities are varied from 2 to 50
and class cardinality is fixed at 2. This experiment was performed using a sample size

of 10° in order to minimize any effect associated to the sample size.

o
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Figure 2.2: SU and MSU for different values of feature cardinality and dichotomous class.

30



Figure 2.2 presents the comparison of SU and MSU values. SU has a value close to
0 for the irrelevant feature regardless of the cardinality. For the informative feature, SU
decreases when cardinality of the feature increases. In this case, the SU slope flattens
as cardinality increases. The MSU curve presents a similar trend, with a lower level

because of the irrelevant feature.

2.6.1.2 Scenario #2

The capability of MSU to capture the interaction between features is studied in this
scenario. The dataset used in this experiment is composed of two binary features and
the target rule for classification is the XOR function. Also, the effect of the sample size
on MSU is analyzed by varying the number of instances from 8 to 150. The robustness
in the presence of noise is analyzed by adding various levels of white noise to the
features. In particular, the following percentage levels of noise were considered: 0, 5,

10, 15, 20 and 25. To gain insight on these issues, two experiments are performed:

o In the first experiment, it is analyzed the ability of MSU for capturing the inter-
action of two features that are individually non-informative, but are collectively

informative as it is the case of the XOR rule.

e The second experiment is similar, adding levels of white noise to analyze the

robustness of MSU in the presence of noise.

The results of the first experiment in this scenario are shown in Figure 2.3a. SU
values of individually non-informative feature are low and converge to 0 as the sample
size increases. In contrast, MSU always assumes higher values. This is due to the fact
that MSU is able to capture the interaction of both features, converging to the “true”
value of 0.5 for large sample sizes. Figure 2.3b presents the values of MSU for different
levels of noise. As it can be expected, the higher the noise levels, the lower the MSU

values.

2.6.2 Analyze the bias of MSU

In this section, experiments are presented so as to study the effect that several factors
(cardinality, dimensionality and sample size) have on the MSU.

2.6.2.1 Analysis of cardinality bias

A first experiment analyzes how the cardinality influences MSU. To this end, a synthetic

dataset of two features (one informative and the other irrelevant) is used, comparing
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function at different noise levels.

Figure 2.3: Study of the capability of MSU to capture interaction of features, and its robustness
in presence of noise.

the results obtained by MSU with those achieved by SU on each feature individually.
In order to examine the effect of the cardinality on the measures, the number of values
of both features and the class varied from 2 to 50. In all cases the sample size was
fixed at 10° to minimize any effect associated to the sample size.

Figure 2.4 shows the results of these experiments. In particular, Figure 2.4a com-
pares SU and MSU while Figure 2.4b presents the values of MSU obtained under
various class cardinalities.

In Figure 2.4a, we can observe the values of SU and MSU for two cardinalities
of the class (|Y| = 2 and |Y| = 10, augmenting on Figure 2.2). In both cases, the
irrelevant feature is characterized by SU values close to 0. As far as the informative
feature is concerned, the behavior is similar for both class cardinalities: given a class
cardinality value, SU decreases when the number of values of the informative feature
increases. Also, higher class cardinalities produce higher values of SU. The behavior
of MSU is similar to that of SU for the informative case; and again, MSU values are
slightly lower than the SU because the irrelevant feature “pulls” them down.

Figure 2.4b plots an MSU curve for each class cardinality, with increasing informa-
tive feature cardinality. Higher values of either cardinality would require larger sample
size to control the bias. For our sample of 10°, a cardinality of 10 shows a small bias

but this effect increases for higher cardinalities.
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Figure 2.4: Effect of varying class cardinality on SU and MSU. Sample size is fixed at 10°.
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Figure 2.5: Effect of varying class cardinality on MSU. Sample size is fixed at 10°.

In order to gain a better perspective of how MSU values change when increas-
ing feature and class cardinalities, two perspectives are shown of the corresponding
three-dimensional surface in Figure 2.5. At a fixed sample size of 10°, increasing class

cardinality sharply increases MSU values specially at the beginning; whereas increas-
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ing feature cardinality causes MSU to quickly decrease and then become stable after

reaching a cardinality of about 20.

2.6.2.2 Analysis of dimensionality bias

In this section, the bias of MSU associated with dimensionality is analyzed. In order to
do so, the dataset generated with the XOR function is employed to examine how the
value of MSU changes when adding irrelevant and individually informative features. In
order to avoid any bias due to any other factor, features with a cardinality of 2 and a
sample size of 10® are considered. The robustness of MSU against noise is also tested

by setting different levels of noise, ranging from 0% to 25%, as in previous sections.
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(a) MSU values when adding irrelevant fea- (b) MSU values when adding individually infor-
tures. mative features.

Figure 2.6: MSU bias due to dimensionality. In all cases the sample size is fixed to 10%.

Figure 2.6 presents the values of MSU when adding irrelevant features (Figure 2.6a)
and individually informative features (Figure 2.6b). In the first case the addition of
features results in an asymptotic decrease in MSU values towards 0. In the second case
the addition produces a slow convergence towards a “real” level of correlation induced
at KM’s generation of informative features. Furthermore this behavior is similar when

increasing the noise — higher noise levels imply lower MSU values.

2.6.2.3 Analysis of sample size bias

The bias associated to size of the sample is explored in this section. It is shown that a

small sample size implies increasing MSU values as the number of features increases.
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Figure 2.7: Effect of sample size on MSU. The sample size is fixed to 1000.

Again, considering the XOR scenario, the previous experiment of adding irrelevant
features is repeated, with the difference that a small sample of 1000 is used. Figure 2.7
corresponds to the addition of irrelevant and individually informative features (see 2.7a
and 2.7b) respectively. As one can see, MSU becomes strongly biased upwards when

dimensionality increases.

2.6.3 Analyze MSU behavior with a calculated sample size

In this section, the behavior of the measure is analyzed by comparing the values of
MSU from a very large dataset with those from a sample fixed to the size calculated
by expression 107. Continuing to use the XOR scenario, the following experiments are

performed:

o First, the values achieved by MSU when adding irrelevant and individually infor-
mative features in a population of 10® are compared with those obtained from a
sample size calculated by the empirical expression 10w. Then, the robustness in

both cases is studied by adding noise at percentual levels {5, 10, 15,20}.

e Second, MSU values are calculated for subsets of mixed types of features for a
population of 10° and for sample sizes calculated by 107, and the results are

compared.
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2.6.3.1 MSU and addition of features

In two sets of experiments, the values achieved by MSU when adding irrelevant and
individually informative features in a population of 10® are compared with the values
from a sample whose size is calculated by the empirical expression 10mr. Then, the
robustness in both cases is studied by adding noise at percentual levels {5, 10, 15,20}.
Figure 2.8 shows the results of both scenarios. The comparison between the population
MSU and the sample MSU when adding irrelevant features is shown in Figure 2.8a,
with the values of MSU very close to population MSU in all cases. Irrelevant features
with noise are shown in Figure 2.8b, where MSU behaves in a similar way but values
decrease when increasing noise levels. Results with individually informative features
are very similar (Figures 2.8c and 2.8d), but achieving higher MSU values than with

irrelevant features.

2.6.3.2 MSU values with mixed types of features

In this experiment, MSU values are calculated for subsets of 2 to 9 features of mixed
types. Values for populations of 10% are compared with values obtained from samples
with sizes calculated by expression 107. For each subset, the types of features were
randomly chosen.

The paired histogram in Figure 2.9a shows the value of MSU on the population
and on the sample, for each subset of features. The number of instances in each
subset is reported in the upper side. The types of features of each subset are shown in
Figure 2.9b. Overall, MSU values estimated from samples are quite close to the true
population values, except in the case of the 2 non-informative attributes where the true
MSU value is 0.

2.6.4 Assess MSU applied to feature selection

In the following, experiments aimed at assessing the ability of MSU to evaluate subsets
of features are presented. Results obtained on synthetic data are presented first, and

then the results achieved on real-word datasets.

2.6.4.1 Results on synthetic data

In this experiment, an exhaustive search is applied to report the subset with the highest
MSU value using four synthetic datasets: Corral, Monk-1, Monk-2 and Monk-3 which
were introduced in the Data chapter. Results are shown in Table 2.5, where the first

column refers to the dataset name followed by the target concept ). The third column
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Figure 2.8: Comparison between sample MSU and population MSU, and analysis of the effect
of noise in MSU. Sample sizes calculated by expression 107 are shown for each curve. Total
population size is 108.

shows the relevant features R to be selected, finally, in the last column, the subset of
features S with the highest MSU value is shown.

As can be noticed from the last two columns of the table, MSU is capable of
identifying the important features in the datasets, with the exception of features a, for

the Monk-3 dataset. A possible cause for this inaccuracy is that the dataset includes
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Figure 2.9: Comparing real MSU in a 10%-instance universe with the MSU from a sample whose
size is calculated with the proposed precision.

Table 2.5: Summary of the results of exhaustive search on synthetic datasets.

Dataset Y R S

Corral  (AOA A1)V (BOA B1) A0, Al,B0,Bl A0, Al, B0, Bl

Monk-1 (a1 = CLQ) V (a5 = 1) ai, as, s ay, g, as

Monk-2 {ai =1A a; = 1} a1 — Qg a; — Ag
i#j,j=1,...,6

Monk-3 (ab=3Aad =1)V Ao, Ay, A5 ao, s

(a5 # 4 N a2 #3)

5% class noise as described in the Data chapter.

2.6.4.2 Results on real-world data

The results on real-world datasets are presented in this subsection. In order to assess
the performance of MSU, the greedy strategy called Sequential Forward Selection (SFS)
is used, taking as evaluation measures the MSU and the Correlation-Based Feature
Selection (Hall, 1998) (CFS). The experiments were performed with Naive Bayes due
to its popularity and good results achieved on several real-world datasets.

Model quality on the data is assessed through a k-fold cross-validation scheme,

where £ is set to 10. In real-world data the true generalization error is not usually
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known and, therefore, it is not possible to determine whether a given estimate is an
overestimate or underestimate. However, cross-validation is suitable for model com-

parison purposes. The statistical ¢t-test was also applied to support the discussion.

Table 2.6: Accuracy achieved and number of features found by SFS using MSU and CFS.

Accuracy Number of features
Dataset MSU CFS MSU CFS
Haberman 73.87+ 6.25 T73.87+ 6.25 1.00£ 0.00 1.00£ 0.00
Balance Scale 90.724+ 1.98 90.72+ 1.98 4.00+ 0.00 4.00+ 0.00
Iris 94.67+ 5.26 96.00+ 5.62 1.40+ 0.52  2.00£ 0.00
Nursery 7097+ 0.83 7097+ 0.83 1.00£ 0.00 1.00£ 0.00
Diabetes 74224+ 247 7657+ 291 1.70£ 221 3.40£ 0.52
Heart Statlog 72.22412.50 84.07+ 6.06 2.80£ 3.55 650+ 1.18
Glass 50.91+ 5.51 48.61+ 5.40 7.00+ 0.00 6.50+ 0.71
Heart H 82944+ 6.57 83.31+ 5.04 250+ 0.53 3.20+ 0.42
Breast Cancer 74.13+ 6.64 71.69+ 7.20 840+ 190 4.20£ 0.92
Wine 81.86 £12.46 96.67+ 5.37 1.80+ 0.92 820+ 1.23
Sonar 67.74+11.40 65.33+£11.13 990+ 7.92 1770+ 0.95
Credit A 85.51+ 4.73 85.51+ 4.73 1.00£ 0.00 1.00£ 0.00
Z.00 98.00+ 4.22 95.00+ 7.07 910+ 0.32 9.60+ 1.43
Lymph 76.29 £ 10.77 75.52412.53 9.50+ 896 820+ 2.30
Mean 78.15 79.56 4.36 5.46

Table 2.6 shows the results obtained by SF'S using both MSU and CFS. On average,
the accuracy achieved is similar on all datasets, being slightly higher for CFS. Only
in Heart Statlog and Wine dataset the classification models learned with MSU are
worse than those obtained when CFS was used. However, these differences are not
statistically significant according to a t-test (p-value = 0.77).

Table 2.6 also shows the number of features selected by SF'S when using MSU and
CFS. It can be noticed that, on average, the use of MSU yields to the selection of
fewer features. In the cases of the Heart Statlog, Wine and Sonar datasets, smaller
subsets of features were selected when SEF'S used MSU, while the opposite is true on
the Breast Cancer dataset. As for the accuracy, also in this case such differences are

not statistically significant, since the p-value is 0.49.
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2.7 Conclusions and future work

In this chapter, we introduce the Multivariate Symmetrical Uncertainty (MSU) mea-
sure, as an extension of the Symmetrical Uncertainty (SU) to the multivariate case.
In order to evaluate the proposal, several experiments on synthetic datasets are con-
ducted. Results confirm that MSU is a reliable multivariate correlation measure for
nominal variables, with promising properties, capable of detecting linear and non-linear
dependencies or interactions.

Three important factors that contribute to the bias of MSU are identified, namely
the dimensionality, the cardinality of features and the sample size. In addition, it is
experimentally observed that the effects of high dimensionality and high cardinalities
are controllable by using larger sample sizes. Based on this, a condition is derived
that allows the determination of the proper number of samples to avoid bias with a
desired probability 1 — «. For such purpose, the concepts of total representativeness
and extreme sample are introduced. The former defines how accurately a given sample
reflects the entire population while the latter specifies a situation where one or more
feature categories are missing from the observed outcomes in the sample.

Since the observed robustness and properties of the proposed MSU measure have
been established, an assessment on a feature selection problem for classification tasks
is performed through several experiments on both synthetic and real-world datasets.
Results on synthetic data reinforced previous conclusions that MSU is capable of cap-
turing interaction of two or more features. On real-world data, results show that MSU
can be used as a feature subset evaluator method capable of finding subsets of relevant
features. These subsets yield comparable classification accuracy for similar numbers of
features on most datasets with respect to the CFS (Correlation-Based Feature Selec-
tion) strategy.

MSU accuracy depends on samples that are totally representative. Sample sizes
as presented in this chapter are based on the premise of independence among source
features, an assumption made for the analysis purposes of this work. This assumption
can be relaxed in future studies to allow for previously known partial dependencies,
and achieving greater generality in solutions, all of which may lead to smaller required

sample sizes.

40



Chapter 3

Feature Selection: A perspective on inter-

attribute cooperation.

High-dimensional datasets depict a challenge for learning tasks in data mining and
machine learning. Feature selection is an effective technique in dealing with dimen-
sionality reduction. It is often an essential data processing step prior to applying a
learning algorithm. Over the decades, filter feature selection methods have evolved
from simple univariate relevance ranking algorithms to more sophisticated relevance-
redundancy trade-offs and to multivariate dependencies-based approaches in recent
years. This tendency to capture multivariate dependence aims at obtaining unique
information about the class from the intercooperation among features. This chapter
presents a comprehensive survey of the state-of-the-art work on filter feature selection
methods assisted by feature intercooperation, and summarizes the contributions of dif-
ferent approaches found in the literature. Furthermore, current issues and challenges

are introduced to identify promising future research and development.

3.1 Introduction

Large amounts of data are being generated in various fields of scientific research, in-
cluding economic, financial, and marketing applications (Chanda et al., 2009). These
data often have the characteristic of high dimensionality, which poses a high challenge
for data analysis and knowledge discovery. Redundant and irrelevant features increase
the learning difficulty of the prediction model, cause overfitting and reduce prediction
performance (Yao et al., 2022). In order to use machine learning methods effectively,
preprocessing of the data is essential. Feature selection has been proven effective in

preprocessing high-dimensional data and in enhancing learning efficiency, from both
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theoretical and practical standpoints (Blum and Langley, 1997; Liu and Motoda, 2012;
Guyon and Elisseeff, 2003). Thus, to overcome problems arising from the high dimen-
sionality of data, feature selection removes irrelevant and redundant dimensions by
analyzing the entire dataset.

Depending on whether the class label is used in the feature selection process or not,
the feature selection methods can be categorized into supervised and unsupervised.
Unsupervised feature selection is used to explore the dataset without the labeled data.
The supervised feature selection uses the labels of samples to select the feature subset.
In addition, supervised feature selection methods are usually grouped into three main
categories: wrapper, embedded, and filter methods (Guyon and Elisseeff, 2003; Liu
et al., 2010; Liu and Zhao, 2012; Zhong et al., 2004).

Wrappers search the space of feature subsets, using the classifier accuracy as the
measure of utility for a candidate subset (Kohavi and John, 1997; Wan et al., 2022). The
main advantage of such an approach is that the feature selection phase benefits from
the direct feedback provided by the classifier. However, there are clear disadvantages
in using the wrapper approach. The computational cost is huge, while the selected
features are specific for the considered classifier. Embedded methods (Guyon et al.,
2008) select features by determining which features are more important in the decisions
of a predictive model. The wrapper and embedded methods can be categorized as
classifier-dependent. On the other hand, strategies based on the filter approach can be
categorized as classifier-independent (Macedo et al., 2019).

The filter method approach evaluates the features’ relevance based on the data’s
intrinsic properties, being independent of the learning process. In general, filters are
relatively inexpensive in terms of computational efficiency; they are simple and fast,
and, therefore, most of the designed methods pertain to this category (Bolén-Canedo
et al., 2016). Furthermore, in real-world applications, many of the most frequently
used feature selection algorithms are also filters (Liu et al., 2010).

Recently, hybrid and ensemble methods were added to the general framework of
feature selection in order to take advantage of both filter (computational efficiency)
and wrapper (high performance) approaches (Almugren and Alshamlan, 2019).

Over the decades, filter feature selection methods have evolved from simple univari-
ate relevance ranking algorithms to more sophisticated relevance-redundancy trade-offs
and to a multivariate dependencies-based approach in recent years. We refer to the
latter as cooperativeness (also known as complementariness (Chen et al., 2015), synergy
(Zeng et al., 2015a) and interaction (Jakulin and Bratko, 2003b)).

Cooperating features are those that individually appear to be irrelevant or weakly
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relevant to the class; but taken in combination with other features, they are highly
correlated to that target class.

The simplest example is probably the behavior of a XOR-patterned database of 3
attributes X, X, and a class C. Since in this case SU (X, C) = SU(X3,C) = 0, one is
tempted to conclude that both X; and X, are irrelevant with respect to C'. However,
MSU(X;,Xs,C) > 0; hence X; and X, intercooperate to determine the value of C.
As a result a first simple rule for finding intercooperations can be “find attributes X
such that SU(X, C) equals 0 or nearly 0, then pair each of these with C' to check their
relevance with respect to the class.”

In particular, this relates to the fact that ignoring possible feature interdepen-
dencies results in subsets with redundancy and lack of cooperative features (Guyon
and Elisseeff, 2003; Jakulin and Bratko, 2004), which in turn cannot achieve optimal
classification performance in most domains of interest (Xue et al., 2015).

Finding relationships and dependencies among variables (that is, features and/or
class) is usually accomplished by employing some measure. These relationships are
relevance, redundancy, and cooperativeness (the latter being viewed as interaction,
complementarity, or synergy). Generally, the filter methods are based on these concepts
(Vergara and Estévez, 2014).

Several studies (see Section 3.4) showed that taking into account high-order de-
pendencies among variables can improve the performance of feature selection. More
recently, Wan et al. (Wan et al., 2022) proposed a feature selection strategy using a
filter-wrapper approach called R2C'I, which takes into account multiple-feature correla-
tions. In this paper (Wan et al., 2022), the observations made on multiple dependencies
are particularly interesting as they characterize complementarity and interaction, from
the point of view of the two subsets of attributes (selected and non-selected) that
are being generated into the search space. Undoubtedly, feature intercooperation has
been drawing more attention in recent years. Thus, the literature on cooperativeness-
based feature selection that considers feature dependence shows an increase despite
early research on interaction information dating back to McGill (1954) (McGill, 1954)
and subsequently advanced by Han (1980) (Han, 1980), Yeung (1991) (Yeung, 1991),
Tsujishita (1995) (Tsujishita, 1995), Guyon and Elisseeff (2003) (Guyon and Elisseeff,
2003), Jakulin and Bratko (2004) (Jakulin and Bratko, 2004) and Kojadinovic (2005)
(Kojadinovic, 2005).

So, despite this research area receiving significant attention in recent years (most
of the work has been published in the last decade), the problem is still challenging,

and new algorithms emerge as alternatives to the existing ones.
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In this chapter, we focus on filter methods for feature selection based on feature
intercooperation. We provide a comprehensive survey of the state-of-the-art work, and
a discussion of the open issues and challenges for future work. For all the reviewed
algorithms we provide the year of their first appearance in the scientific literature;
the chronological perspective of feature cooperativeness evolution is presented in this
manner.

We expect this survey to attract attention from researchers working on different fea-
ture intercooperation paradigms to investigate further effective and efficient approaches
to addressing new challenges in feature selection.

This review chapter is structured as follows. In the next section, we provide the
basements of feature evaluation. Filter methods foundations are introduced in Section
3.3. Then, we will review the literature on feature selection methods based on feature
intercooperation in Section 3.4, followed by a general discussion about issues and future
challenges in Section 3.5. Finally, we present our principal conclusions and future

research lines.

3.2 Feature Evaluation

Evaluation measure is a key part of feature importance criterion, which forms the basis
of feature selection methods (Liu and Motoda, 2012). The feature selection objective is
to find the relevant features (individually or in cooperation) and to discard redundant
and irrelevant features in order to preserve the information contained in the whole set
of input variables with respect to the target class.

The traditional correlation proposed by Pearson only computes the correlation
between two numeric features. The ranked correlation measures by Spearman and
separately by Kendall (Croux and Dehon, 2010) do the same for two ordinal or ranked
variables. But in addition to features that express quantity or order, there are also
qualitative features in real life. Qualitative features are more generic in the sense that
every numeric attribute can be made qualitative by employing discretization methods
(Lavangnananda and Chattanachot, 2017). Ordinal features are already qualitative in
their nature. In this work, we look at correlations between two or many qualitative
features. At present, information theory methods are the ones that allow to compute
correlations between two or more qualitative attributes, thus opening the doors to
research in generalized feature selection techniques.

We use information theory measures to quantify relevance, redundancy, and coop-

erativeness. Here, we show these concepts and basic definitions as follows.
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3.2.1 Bivariate information measures

3.2.1.1 Mutual Information

Mutual information (also called information gain (IG) (Quinlan, 1993) or two-way
interaction (Jakulin and Bratko, 2004)) measures the amount of stochastic dependency

between variables, hence it can be used as a bivariate measure of correlation.

Definition 1. Consider a discrete random variable X, with possible values {x1, ..., Tx}
and probability mass function P(X), and suppose we draw a series of X wvalues. The
entropy H of the variable X is a measure of the uncertainty in predicting the next value
of X and is given by

H(X):=— Z P(z;)logy(P(x;)). (3.1)

The mutual information I(X,Y") measures the reduction in uncertainty about the

value of X when the value of Y is known, as expressed in the next definition.

Definition 2. For discrete random variables X andY, the mutual information I[(X,Y)
is
I(X;Y)=H(X)-H(X|Y)
= HY)-H(Y | X) (32)
=HX)+HY)-H(X,)Y),

where H(X,Y) is the extension of H(X) using joint probabilities P(x;,y;) in the defi-

nition of entropy.

It can be shown that I(X;Y) = 0 when X and Y are statistically independent.

3.2.1.2 Symmetrical Uncertainty

Because the mutual information tends to be larger for variables with more labels, it is
convenient to normalize its values using both entropies, originating the Symmetrical

Uncertainty (SU) measure (Press et al., 1988) expressed as

(3.3)

SU(X,Y) ::2[ XY ]

H(X)+H(Y)

SU restricts its values to the range [0,1].
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3.2.2 Multivariate information measures

3.2.2.1 Interaction Information

Interaction information (McGill, 1954) among multiple variables can be understood
as the amount of information shared or bound up in a set of n random variables,
but cannot be found within any subset of those n variables. Then, the interaction

information among three variables (3-way interaction information) is given by

I(X;Y;2)=1(X;Y | Z2)-1(X;Y)
= I(X;Z|Y)-1(X:2) (3.4)
=1(Z;Y | X)-1(Z;Y).
Unlike mutual information, the interaction information can be negative, positive,
or zero (Jakulin, 2005).
3.2.2.2 Multivariate Symmetrical Uncertainty

To quantify the dependency among more than two variables, the Multivariate Sym-
metrical Uncertainty (MSU) (Sosa-Cabrera et al., 2019) has been proposed as a gen-

eralization of the SU according to the following expression.

L n H(Xln)
MU =5 [ = s i | )

where H(Xj.,) is the extension of H(X) using the joint probabilities of variables

Xi,...,X,. Like the Symmetrical Uncertainty, M SU restricts its values to the range
[0, 1].

3.2.3 Type of dependencies in data

Generally, for the evaluation of attributes, the feature selection process is based on
the typing of dependencies between variables. According to the behavior of one or
several attributes (as possible predictors of the class), dependencies can be classified
into univariate/multivariate relevance and univariate/multivariate redundancy. This
section aims to present a concise review of these notions. In particular, we will address a
special case of multivariate relevance, which we have designated as intercooperativeness.

Let F, S, and C denote the original feature set, the selected feature subset, and

the target class, respectively. Through univariate and multivariate measures based on
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information theory, we offer definitions of relevance, redundancy, and intercooperative-
ness. Also, we characterize a variable as relevant, redundant, or intercooperative for

these sets.

3.2.3.1 Relevance

In the literature, several works (Bell and Wang, 2000; Caruana and Freitag, 1994;
Koller and Sahami, 1996) have made an effort to classify the features according to their
contribution to the meaning of the class concept. In this context, feature relevance
has arisen as a measure of the amount of relevant information that a feature may
contain about the class, where the level of individual relevance is defined either in
terms of mutual information as I(f;; C'), or SU(f;, C) using Symmetrical Uncertainty
analogously.

In this context, a feature is considered irrelevant if it contains no information about

the class and is unnecessary for the predictive task.

3.2.3.2 Redundancy

Redundancy is generally defined in terms of feature correlation, and thereby, it is quan-
tifiable with the level of dependency among two or more features. In terms of informa-
tion measures, a bivariate approach for feature redundancy is defined as I(f;; f;), while
a negative value of I(f;;S; C) indicates partial or complete redundancy in multivariate
approach (Wang et al., 2013; Yu and Liu, 2004; Sosa-Cabrera et al., 2019). Similarly,
to measure the common portion of information received from a set of features, Multi-
variate Symmetrical Uncertainty can be used as M SU( f1.,) where fi., represents the
feature set fi1,..., fu.

3.2.3.3 Intercooperativeness

Intuitively, the intercooperativeness measures the amount of information received from
grouped features, instead of separate features (Sosa-Cabrera et al., 2019; Vergara and
Estévez, 2014; Jakulin, 2005). This concept, in which a set of features cooperate to
predict the class label, can be quantified according to a positive value of the expression
I(f1; fo; ..o fn; ©). Similarly, MSU(f1, fa, ..., fa, C) can be used as a measure of the
cooperative association of two o more features fi, fs,..., f, along with the C' class
variable.

Feature cooperativeness must be measured with the target variable, that is, com-

pute the relevance of a feature to the class with at least another feature presented.

47



Therefore, three-way dependency is the minimum order for the evaluation method of
intercooperativeness.

Note that to describe this same concept, the terms interaction, synergy, and com-
plementarity are used interchangeably throughout the literature. However, in Section

3.5, we shall argue for a more precise interpretation for each case.

3.3 Filter Methods

A filter feature selection process is independent of any learning algorithm and relies
on underlying attributes of data. Thereby, to evaluate the utility of features, a filter
model depends on statistical criteria applied to data such as distance, dependency,
information, consistency, and correlation (Ullah et al., 2017).

A filter feature selection method attempts to select the minimally sized subset of
features according to a loop of subset generation (by search strategy) and its evaluation
(by measure) until some stopping criterion is satisfied (Cai et al., 2018). Based on these
basic steps, an abstract algorithm for feature selection that shows the behavior of any

filter method in a unified form is depicted in Algorithm 1.

Algorithm 1: A generalized filter method
Input: Full feature set I, a subset from which to start the search Sy, and a
stopping criterion 4.
Output: most informative feature subset Speg;.
1 Spest < So // initialize Spes.
2 Ypest evaluate(So, F, M) // evaluate Sy by measure M.

3 repeat

4 S <« search strategy(F, Sbest) // generate next candidate subset.
5 v evaluate(S, F, M) // evaluate S by measure M.

6 if v is better than vp.s; then

7 Voest <= 7Y // update Ypest-

8 Spest < S // update Spey .

9 end

10 until § 2s reached
11 return Sy

3.4 Feature-Intercooperation-based filter methods

In the feature selection field, the detection and significance of higher order interactions

between variables have been a matter of discussion and experimentation, especially in
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recent years.

In this section, we briefly summarize the existing filter feature selection meth-
ods assisted by feature intercooperation, looking at three aspects: the estimation of
high-dimensional dependencies, the search techniques, and the number of higher-order

interactions.

3.4.1 Estimation of high-order interactions.

Information theoretic quantities, such as mutual information and its generalizations,
have several advantages as measures of multiple variable dependence. They are inher-
ently model-free and non-parametric, and exhibit only modest sensitivity to undersam-
pling (McGill, 1954; Jakulin and Bratko, 2003b). However, it has long been recognized
that information theory measures, and many others, generally cannot be computed
analytically for all possible subsets of dependent variables. As such, researchers have
developed methods that can calculate the presence of nonlinear and high-dimensional
dependencies efficiently and reasonably.

Thus, instead of directly calculating the five-way interaction terms, which are com-
putationally expensive, FJMI (Tang et al., 2019) took into account two- through five-
way interactions between features and the class variable to capture interactions. The
approach is based on the fact that five-dimensional joint mutual information can be
decomposed into a sum of two- through five-way interactions, which is easier to com-
pute.

Shishkin et al. (Shishkin et al., 2016b) proposed the CMICOT method, which uses
conditional mutual information (CMI) to identify joint interactions between multiple
features (more than three). The technique is based on a two-stage greedy search for the
approximate solution of high-dimensional CMI and binary representation of features
that reduce the dimension of the space of joint distributions, to mitigate the effect of
the sample complexity.

Vinh et al. (Vinh et al., 2016) proposed a higher dimensional MI-based feature
selection method called RelaxMRMR. To capture higher-order feature interactions,
the authors identified the assumptions that can be relaxed for decomposing the full
joint mutual information criterion into lower-dimensional MI quantities.

To explicitly treat feature interaction, Zeng et al. (Zeng et al., 2015a) proposed a
complementarity-based ranking method called IWFS. The approach is based on inter-
action weight factors, a variation of three-way interaction that can measure redundancy
and complementarity between features.

Based on the link between interaction information and conditional mutual infor-
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mation, Cheng et al. (Cheng et al., 2011) proposed a greedy algorithm called CMIFS,
which considers not only the competition among features but also the cooperation.
This criterion takes account of both redundancy and synergy interactions of features
and identifies discriminative features.

El Akadi et al. (El Akadi et al., 2008) proposed an evaluation function called IGFS.
It takes into account different features interaction without increasing the computational
complexity, and is based on the individual Mutual Information and a compromise
(made by the mean of Interaction Gain) between features redundancy and features
interaction.

Chow and Huang (Chow and Huang, 2005) combined a pruned Parzen window
estimator and the quadratic mutual information for the effective and efficient estimation
of high-dimensional mutual information.

With this contribution, Chow and Huang developed a feature selection method
called OSF-MI which can identify the salient features and analytically estimate the

appropriate feature subsets.

3.4.2 Search Techniques.

Feature selection can be viewed as a search problem, with each state specifying a
subset of the relevant features in the search space. An exhaustive method can be
used for this purpose in theory but is quite impractical, and in fact, very few feature
selection methods use an exhaustive search (Xue et al., 2015). Therefore, heuristic
search strategies such as greedy, best-first, and genetic-algorithmic, can be used in
a backward elimination or forward selection process for obtaining possible features
as a suboptimal solution. However, feature selection problems have a large search
space, which is very complex due to feature interaction. To overcome such issues, filter
methods that can restrict the solution search space and make the computation more
tractable have become essential.

Recently, Singha and Shenoy (Singha and Shenoy, 2018) proposed an adaptive
method called SAFE which uses an adaptive 3-way cost function that uses redun-
dancy—complementarity ratio to automatically update the trade-off rule between rel-
evance, redundancy, and complementarity. This approach uses the best-first search
strategy, which offers the best compromise solution.

Since it is necessary to balance accuracy and complexity in high-order interactions,
Tang et al. (Tang et al., 2018) presented a method called IMFS-FD to obtain a set of
features that preserves k-way important interactions but does not intend to interpret

all possible interactions reducing the search space.
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Mohammadi et al. (Mohammadi et al., 2017) implemented the feature grouping
based on multivariate mutual information (FGMMI), which discovers hidden relations
between more than two features at the same time. This method aims to construct
groups by using the k-means algorithm on a computed MI matrix which divides data
into clusters and finally computes MMI for all of the features in each group to select
each group’s feature having the maximum relevance.

Peng and Liu (Peng, 2016) proposed the RJMIM method that employs a forward
greedy search strategy to find and select the features with high discriminative power by
measuring both the joint mutual information and the interaction information between
the features already selected and candidate features.

Zeng et al. (Zeng et al., 2015b) proposed a feature ranking algorithm called NI-
WFEFS. It is based on neighborhood rough sets that can be used to search for interacting
features. Since redundant features produce negative influence and interaction features
produce positive influence in predicting, this approach first computes the neighborhood
mutual information between a feature and the target and then adjusts it by manip-
ulating the interaction weight factor, which can reflect the information of whether a
feature is redundant or interactive.

Bennasar et al. (Bennasar et al., 2013) employs feature interaction — a maximum
of the minimum criteria to select the feature that has the strongest relevance to the
class label and the highest minimum interaction with the already selected. This method
called FIM, is based on three-way interaction information using a forward greedy search
algorithm to select relevant and non-redundant features.

To identify all possible feature interactions of maximum size, Sui (Sui, 2013) pro-
posed a BIFS method which is constructed by two main processes: forward identifi-
cation to identify binary interactions and backward selection where irrelevant feature
interaction subsets will be deleted from subsets ranked based on information gain per
feature (IGFS).

Zhang and Hancock (Zhang and Hancock, 2011) presented a method called DSplus-
MII, which utilizes the multidimensional interaction information criterion and domi-
nant sets for feature selection. This approach can consider third or higher-order feature
interactions and limits the resulting search space using dominant set clustering, which
separates features into clusters in advance.

Zhao and Liu (Zhao and Liu, 2009) proposed the INTERACT method, which finds
interacting features based on a feature sorting metric using data consistency. Contrary
to an evaluation based on mutual information, the inconsistency measure is monotonic,

allowing an efficient search to explore feature interactions.
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For a complementary attribute of an already selected attribute to have a much
greater probability of being selected, Meyer and Bontempi (Meyer and Bontempi, 2006)
have introduced a method called DISR. Its goal function uses symmetrical relevance
and considers the net effect of redundancy and complementarity in the search process.
They show that a set of attributes can return information on the class variable that is

higher than the sum of the informations from each attribute taken individually.

3.4.3 Number of higher-order interactions.

Despite being hard to measure directly, the interaction and the candidate interactions
grow exponentially with the number of features (i.e., the number of variables when
considering interactions increases by several orders of magnitude), and higher-order in-
teractions have enormous potential for improving the performance of feature selection.
This illustrates why the exploration of high-order interactions is a challenge where
increasingly efficient methods have been developed to take into account both 3-way,
4-way and 5-way interactions and can possibly extended to the case of full higher-order
terms.

Recently, for instance, Wang et al.(Wang et al., 2021) proposed an algorithm called
MRMI to explore three-way interactions. Future works include how it can be extended
to the case of higher order terms to select strongly relevant and possibly more interac-
tive features.

To retain the features with the greatest complementarity in the selected feature
subset during the progress of feature selection, Li et al.(Li et al., 2020a) proposed a
new algorithm, FS-RRC, which computes the complementarity score of two features
and the class (three-way interactions).

Pawluk et al. (Pawluk et al.; 2019a) proposed a feature selection method named
ITF'S that considers both 3-way and 4-way interactions. Based on interaction informa-
tion, they prove some theoretical properties of the novel criterion and the possibility
that it may be extended to the case of higher-order terms.

Since the dependence among features is related to both redundancy and comple-
mentariness, Chen et al. (Chen et al., 2015) proposed a method called RCDFS where
the complementary correlation of features is explicitly separated from redundancy. In
this approach, a modification item concerning feature complementariness is introduced
in the evaluation criterion in order to identify interaction among more than two fea-
tures.

Vinh et al. (Vinh et al., 2014) introduced GlobalF'S, which can automatically select

the number of features to be included and can assess high-order feature dependency
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via high dimensional mutual information. However, it is only suitable for problems
with a small to medium number of features, e.g., several tens.

Wang et al. (Wang et al., 2013) proposed a rule-based feature selection algorithm
FRFS for not only identifying and removing irrelevant and redundant features, but
also preserving the interactive ones. The method employs the FOIL algorithm with a
restriction to generate classification rules to collect the features whose values appear
in the antecedents of the rules generated. Then, it eliminates irrelevant and redundant
features while considering multi-way feature interactions.

Bontempi and Meyer (Bontempi and Meyer, 2010) presented mIMR, a causal filter
criterion based on three-way interaction that aims to select a feature subset where the
most informative variables are the ones having both high mutual information with the
class and high complementarity with the others.

To detect pairs of relevant variables that act complementarily in predicting the
class, Vergara et al.(Vergara and Estévez, 2010) proposed CMIM-2 as an improvement
of the CMIM criterion. It maintains the advantages of the original criterion, but
it solves the problem of variables that are relevant in pairs, changing the minimum
function to the average function.

Chanda et al. (Chanda et al., 2009) proposed an Interaction Mining (IM) approach
to capture the multivariate inter-dependencies (synergy and redundancy) among fea-
tures, so they employ this k-way interaction information to improve a feature subset
selection that has significant interactions with the class variable.

Jakulin and Bratko (Jakulin, 2005) introduced interaction information to measure
feature interactions and proposed a feature selection method called ICAP which can
detect two-way (one feature and the class) and three-way (two features and the class)
interactions.

To close this section we would like to mention that using a chronological perspec-
tive, we observe how this research topic receives greater attention from researchers
since 2005. It can be concluded that Jakulin’s work has had a significant influence on
the development of methods for feature selection based on higher-order interaction.

In addition, the entire list of 27 algorithms surveyed, sorted by name, including

also full name and reference, is shown in Table 3.1.

3.5 Issues and future challenges

Having seen filter methods that are based on feature intercooperation, some issues arise

with maybe subtle distinctions that we’d like to point at, signaling future challenges.
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2004

ICAP (Jakulin and Bratko 2005)
OSF-MI (Chow and Huang 2005)
DISR (Meyer and Bontempi 2006)
IGFS (El Akadi et al. 2008)
INTERACT (Zhao and Liu 2009)
IM (Chanda et al. 2009)
CMIM-2 (Vergara et al. 2010)
mIMR (Bontempi and Meyer 2010)
DSplusMII (Zhang and Hancock 2011)
CMIFS (Cheng et al. 2011)

FRFS (Wang et al. 2013)
BIFS (Sui 2013)
FIM (Bennasar et al. 2013)
GlobalF'S (Vinh et al. 2014)
IWFS (Zeng et al. 2015)
NIWEFS (Zeng et al. 2015)
RCDEFS (Chen et al. 2015)
RelaxMRMR (Vinh et al. 2016)
CMICOT (Shishkin et al. 2016)
RJMIM (Peng and Liu 2016)
FGMMI (Mohammadi et al. 2017)
IMFS-FD (Tang et al. 2018)
SAFE (Singha and Shenoy 2018)
FJMI (Tang et al. 2019)
IIFS (Pawluk et al. 2019)

2006 ¢

2008 ¢

MRMI (Wang et al. 2021)

Figure 3.1: Timeline of publications for filter methods based on feature intercooperation. Note
that publications in this field are not numerous and represent the results of research initiated in
2005.

3.5.1 Interaction, Synergy, and Complementarity.

In the literature, the terms interaction, synergy, and complementarity are used inter-
changeably:; however, we consider they are not synonymous and have different meanings
(Figure 3.2). In this sense, in the most recent study (Wan et al., 2022) an interest-
ing distinction is essentially made between complementarity and interaction, from the
point of view of attribute generation into search space; in which the significance of fea-
tures is assessed through their relevance to the class, redundancy and complementarity
with selected features, and interaction with remaining unselected features. Thus, this
work complements and extends existing research such that the distinction between in-
teraction, synergy and complementarity is made from the point of view of quantifying

multivariate dependencies, and the roles of these variables (i.e. features and/or class).
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Table 3.1: Filter Methods based on Feature Intercooperation sorted by name.

Method Full Name Reference
Binary Interaction based .
BIFS Feature Selection (Sui, 2013)
CMICOT Conditional Mutual Inform?‘tlon with (Shishkin et al., 2016b)
Complementary and Opposing Teams
Conditional Mutual Information
CMIFS Feature Selection (Cheng et al., 2011)
CMIM-2 Conditional Mutual Information (o, 0oa 4nd Estéves, 2010)
Maximization Version 2
DISR Double Input Symmetrical Relevance  (Meyer and Bontempi, 2006)
DSplusMII DSplusMII (Zhang and Hancock, 2011)
Feature Grouping based on .

FGMMI Multivariate Mutual Information (Mohammadi et al., 2017)
FIM Feature Interaction Maximisation (Bennasar et al., 2013)
FJIMI Five-way Joint Mutual Information (Tang et al., 2019)

FOIL Rule based
FRES Feature Subset Selection (Wang et al., 2013)

FS-RRC Feature Selection based on melevaynce7 (Li et al., 2020a)

redundancy and complementarity

GlobalF'S Global Feature Selection (Vinh et al., 2014)

ICAP/IC Interaction Capture (Jakulin, 2005)
IGFS Interaction Gain for Feature Selection (El Akadi et al., 2008)

Interaction Information
IIFS Feature Selection (Pawluk et al., 2019a)
IM Interaction Mining (Chanda et al., 2009)
IMFS-FD Interactl(.)n—based F.‘eature.Selectlon (Tang et al., 2018)
using Factorial Design
INTERACT INTERACT (Zhao and Liu, 2009)
Interaction Weight based
IWFS Feature Selection (Zeng et al., 2015a)
mIMR min-Interaction Max-Relevance (Bontempi and Meyer, 2010)
MRMI Max-Relevance Max-Interaction (Wang et al., 2021)
Neighborhood Interaction Weight
NIWES based Feature Selection (Zeng et al., 2015b)
Optimal Feature Selection using
OFS-MI Mutual Information (Chow and Huang, 2005)
RCDFS Red.undar}cy-Complementar.lness (Chen et al., 2015)
Dispersion Feature Selection
RelaxMRMR RelaxMRMR (Vinh et al., 2016)

RIJMIM RIJIMIM (Peng, 2016)

SAFE Self-Adaptive Feature Evaluation (Singha and Shenoy, 2018)

features) in which the class can be included or not.

95

In essence, interaction is a measure of dependence between 2 or more variables and
can therefore be understood as a nonlinear generalization of correlation. This implies

that it can be used to capture a two-way dependence as a minimum order (number of

Definition 3. There exists interaction among variables X1, Xs, ..., X,, whenever their

multivariate symmetrical uncertainty is positive, that is, MSU (X1, Xo, ..., X)) > 0.

Now let’s consider the question of using interaction to measure the amount of
information provided by 2 or more attributes together about the class. In this case, we
are talking about intercooperation (i.e., multi-way interaction among 2 or more features

and the target).



( Interaction )
T

class included

|—>(Intercooperation)
T

collective > individual

|—>( Synergy )
|
individual = 0

|—>(Complementarity)

Figure 3.2: Conceptual relationship between terms that differentiates them.

Definition 4. There exists intercooperation among features Fy, Fs, ..., F,, about the
class C whenever MSU(Fy, Fy, ..., F,,C) — MSU(Fy, F, ..., F},) > 0.

In this sense, the synergy term means that the intercooperation among features pro-
vides more information about the class label as a whole than the sum of the individual

contributions.

Definition 5. There exists synergy among features Fy, Fs, ..., F,, about the class C'
whenever MSU(Fy, Fy, ..., F,,,C) — MSU(F}, Fs, ..., F,,) > SU(F,C) + SU(F,,C) +
<o+ SU(F,,C).

Following the definition above, complementarity occurs when attributes individu-
ally do not appear to contain any information about the class and can only contribute

in combination with others.

Definition 6. There exists complementarity among features F, Fs, ..., F,, about the
class C' whenever [MSU(Fy, Fs, ..., F,,C) — MSU(Fy, Fs, ..., F,) > 0] A SU(F;,C) =
0,vi e {1,....,n}.

3.5.2 Filter method categorization with respect to criterion
function scope.
Feature measure or evaluation criterion plays an important role in feature selection,
which forms the basis of feature selection (Liu and Motoda, 2012).
Given a target variable C and F an n dimensional feature set, where f; € F is used

for representing its elements. Let J(&X') be a criterion function that evaluates a feature

subset X C F. Then the feature selection can be formulated as the problem of finding
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an optimal subset of features S,,; for which

J(Sopt) = max J(X). (3.6)

XCF

Consider § as the subset of currently selected features and f; as a candidate feature
to be added to or deleted from §. Based on the criterion function scope, filter selection

methods may roughly be divided into:

3.5.2.1 1st generation filter methods.

They can only measure attributes’ relevance according to the amount of individual
information contained with respect to the class. These methods are the simplest since
their criterion function is defined as:

J(f;) = IndividualRelevance(f;,C). (3.7)

3.5.2.2 2nd generation filter methods.

While the individual evaluation is incapable of removing redundant features because re-
dundant features are likely to have a similar amount of information, second-generation
filter methods can handle feature redundancy with feature relevance through the cri-

terion function:

J(fi) = IndividualRelevance(f;;C)
— Redundance(f;S). (3.8)
3.5.2.3 3rd generation filter methods.

A clear limitation of previous approaches is that they neglect a feature that appears
to be irrelevant or weakly relevant to the class individually, but when it is combined
with other features, it may highly correlate to the class. A concept that was recently
considered is intercooperativeness, in which a set of two or more features cooperate to

provide information about the target concept:

J(f;) = IndividualRelevance(f;C)
— Redundance( f;; S) (3.9)

+Intercooperation({ f, .., f;}; S;C).
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3.5.3 Cooperativeness and Exclusive Cooperativeness.

As shown in (Yu and Liu, 2004), finer classification of attribute types might contribute
to exploring novel attribute selection strategies, so we propose a conceptual subdivision
of attributes into cooperativeness and exclusive cooperativeness according to either
independence level or absolute dependence on other attributes in order to provide
information. Namely, a cooperative attribute provides information about the class
individually and in cooperation with other attributes, while an exclusively cooperative

attribute only becomes relevant in the context of others.

3.5.4 Simultaneous Evaluation and Evaluation by Phases.

In (Yu and Liu, 2004), existing approaches to relevance and redundancy were studied.
They defined a traditional approach as one that implicitly manages redundancy of
attributes with their relevance (i.e., simultaneous evaluation) and proposed another
approach in which redundant attributes are explicitly identified for their elimination
(i.e., evaluation by phases).

In this regard, when designing a third-generation filter method, we should consider
possible cooperation between attributes and the impacts on the scalability and stabil-
ity resulting from simultaneous evaluation. Thus, scalability is the sensitivity of the
computational performance of the feature selection method to data scale, and stability
is the sensitivity of feature selection results to training set variations.

Novel feature selection methods need to be developed, in which the evaluation by
phases is considered. This approach, which decouples individual relevance analysis,
redundancy analysis, and intercooperation analysis, offers alternatives for search space

reduction.

3.5.5 Multivariate Dualist Measures.

In (Timme et al., 2014), an interesting perspective was studied: measures that treat
all variables equally and measures that treat the class separately from the group of
attributes. We refer to the latter ones as multivariate dualist measures. Although this
type of measure has been successfully applied to various fields (Lizier et al., 2018), to
the best of our knowledge, the use of dualistic multivariate measures for the selection
of attributes has not yet been implemented (Yu et al., 2018). Hence, feature selection

based on multivariate dualist measures is an interesting possibility.
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3.5.6 Maximum Intercooperation Order.

Previous works on real data sets show that the inclusion of high-order dependencies
can improve feature selection based on mutual information (Vinh et al., 2016).
However, the number k (k = 2,3,4,5,m) of interaction terms is generally deter-
mined by expert information, amount of data, degree of error, high-dimensionality
assumptions, or some technical considerations such as scalability and/or computation
time. As the number of candidate interactions increases exponentially with the num-
ber of attributes, it is worth investigating high-order interactions to achieve a balance

between accuracy and complexity.

3.5.7 Intercooperation Over/Under Estimation.

Although third generation filter approach overcomes some of the drawbacks of previous
generations, it has to deal with new issues. Thus, possible overestimation or underesti-
mation should be considered in the quantification of synergistic information as shown
in (Griffith and Koch, 2014). The detection of intercooperativeness itself is a challenge,

and therefore, its precise measurement produces a greater challenge.

3.5.8 Redundancy and/xor Synergy.

Many different groups have developed multivariate measures in use today and differ in
subtle but significant ways. Thus, a crucial topic related to multivariate information
measures is understanding the relationship and meaning of synergy and redundancy.
Some authors argue that redundancy and a synergy component can exist simulta-
neously, whereas others argue that synergy and redundancy are mutually exclusive
qualities (Timme et al., 2014).

From the viewpoint of feature selection, the distinction between synergy and re-

dundancy is essential; therefore, their effects are still an open question.

3.5.8.1 Inter-feature redundancy term and complementarity effects.

An interpretation of the objective function of known methods as approximations of a
target objective function is proposed in (Macedo et al., 2019).

In the same paper it is verified that a redundancy consisting of the level of associ-
ation between the candidate attribute and the previously selected attributes is called
inter-feature redundancy. Such redundancy is important, for instance, to avoid later

problems of collinearity. Furthermore, feature selection methods that include inter-
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feature and class-relevant redundancy terms take into account the complementarity
expressed as the contribution of a candidate feature to the explanation of the class

when taken together with already selected features.

3.5.8.2 Evaluating interaction from the addition of features.

Given a selected feature subset S; consisting of j variables, suppose we increase the
number of variables to k achieving subset Sy so that S; C Sy.

If MSU(S;) < MSU(Sk) the addition of variables has caused a gain in multiple
correlation, and we can say that the added variables S, — S; interact positively with
S;. In the opposite case, if MSU(S;) > MSU(Sj) we can say that the added variables
Sy — S; interact negatively with ;.

A proposal of formal definition for interaction in (Gémez-Guerrero et al., 2022) is
in terms of k-way interaction on top of j variables: It is the minimum gain in multiple
correlation over all possible choices of j-variable subsets S; within Sj. Note that from
a combinatorics point of view, there are C'(k, j) possible such subsets.

The proposed definition covers general and complex cases, but it also accommo-
dates the already known classical statistics cases of interaction on a numeric response,

occurring in multiple regression and analysis of variance.

3.5.8.3 Intercooperation via Game Theory.

In recent years, other approaches have been investigated to overcome the limitation
associated to traditional information-theory-based measures. One of these approaches
that have gained popularity is Game Theory (GT).

In GT, the different scenarios are mathematically assessed so that the success of
an individual decision depends on the decision choices of others (Von Neumann and
Morgenstern, 1947). Azam and You (Azam and Yao, 2011) propose to use GT in
feature selection to deal with high imbalance situations in text categorization. Sun et
al. (Sun et al., 2012) introduce a cooperative game-theory-based framework to identify
the power of each feature according to intricate and intrinsic interrelations among
features. Afghagh et al. (Afghah et al., 2018) propose a novel information-theoretic
predictive modeling technique based on the idea of coalition game theory for feature
selection.

Within GT, the Shapley Value (SV) has been used for feature selection by Chu
and Chan (Chu and Chan, 2020). In this work, the SV is decomposed into high-
order interaction components to measure the different interaction contributions among

features. Bimonte and Senatore (Bimonte and Senatore, 2022) use the SV to construct
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the weighted contribution for each feature to allow the selection of features that have
explanatory value.
Summarizing, GT, in general, and SV, in particular, are useful approaches to iden-

tify the cooperation among features.

3.5.8.4 Feature Selection and/or Deep Learning.

Deep Learning (DL) (LeCun et al., 2015) is an advanced sub-field of Machine Learning
that simplifies the modeling of various complex concepts and relationships using multi-
ple levels of representation. DL is distinct from feature selection as DL leverages deep
neural networks structures to learn new feature representations while feature selection
directly finds relevant features from the original features, thus yielding more readable
and interpretable results (Li et al., 2017).

Although DL techniques for attribute selection have shown good results, we be-
lieve that more attention should be paid to the importance of attributes and the in-
terpretability of machine learning models, since the most accurate estimates are not
always sufficient to solve a data problem.

On the other hand, several studies show that the use of attributes filtered by
traditional attribute selection methods and their use as input in a deep generative
model outperforms state-of-the-art approaches. Therefore, the study of the effects
of intercooperation-based attribute selection methods in a deep generative predictive

model are still an open question.

3.6 Conclusions

Feature selection plays an important role in knowledge discovery. It is an effective tech-
nique in dealing with dimensionality reduction, removing irrelevant data, increasing
learning accuracy, and improving result comprehensibility. Therefore, feature selection
is active research in the fields of data mining and machine learning. Over the past
decade, most research in filter methods has emphasized the use of feature intercooper-
ation to assist in the feature subset selection process. In this chapter, we have surveyed
27 filter feature selection methods that adopt this approach, covering important gaps in
the field. In addition, the concepts of relevance, redundancy and intercooperativeness
are defined and quantified through information theory measures. Finally, the most
significant issues and challenges of filter methods based on feature intercooperation are

described, identifying the future research directions in this area.
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Chapter 4

PART_FS: A feature selection method

based on partitioning and intercooper-

ation!.

4.1 Introduction.

4.2 Background.

4.3 Problem statement.
4.4 Proposed method.
4.5 Experiments.

4.6 Results.

4.7 Conclusion.

!This content is under revision. We will resend the manuscript to you when the new version of the
content will be ready. This content is only for the purposes of closing the procedure.
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Chapter 5

Conclusions and Future Directions

The advent of Big Data, and specially the advent of datasets with high dimensionality,
has brought an important necessity to identify the relevant features of the data. In this
scenario, the importance of feature selection is beyond doubt and different methods
have been developed, although researchers do not agree on which one is the best method
for any given setting (Bolén-Canedo and Alonso-Betanzos, 2018).

In this work, first, we introduce the Multivariate Symmetrical Uncertainty (MSU)
measure, as an extension of the Symmetrical Uncertainty (SU) to the multivariate
case. In order to evaluate the proposal, several experiments on synthetic datasets are
conducted. Results confirm that MSU is a reliable multivariate correlation measure for
nominal variables, with promising properties, capable of detecting linear and non-linear
dependencies or interactions.

We have also provided a study about the use of feature intercooperation to assist
in the feature subset selection process. We have surveyed 27 filter feature selection
methods that adopt this approach, covering important gaps in the field of state-of-the-
art methods, an issue that has not received much consideration in the literature.

And, finally, a novel feature selection approach based on feature search space parti-
tion and features intercooperation named PART _FS is proposed. PART _F'S is particu-
larly versatile framework for high-dimensional data of a complex nature. In this sense,
we compare the performance of PART FS on simulated scenarios and real datasets
with several recent feature selection methods in combinations with different classifiers.
The results show that the proposed method based on partition and intercooperation
outperforms the comparison methods and excels in a variety of problems with different
characteristics.

Nevertheless, feature selection remains and will continue to be an active field that is

incessantly rejuvenating itself to answer new challenges (Liu et al., 2010). For instance,
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given that MSU accuracy depends on samples that are totally representative, a main
drawback of this (sample size based on total representativeness) consists in the fact
that the sample size increases with multivariate cardinality. This implies larger sample
sizes to achieve a prescribed precision. Besides, PART _FS performance could be further
improved by carefully examining the characteristics of the real datasets, modifying the
partitioning criterion and optimizing the model parameters accordingly. Future work

will be focused on these points.
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Appendix A

A Summary in Spanish

A.1 Introduccion

En las tareas de clasificacion, un atributo (i.e., una variable independiente) se considera
relevante, irrelevante o redundante en funcién a la informacion que contiene acerca del
concepto objetivo o clase (i.e., la variable dependiente).

La seleccion de atributos se define como el método de encontrar un conjunto minimo
de atributos relevantes con el objetivo de minimizar el error en la proceso de clasificacion
con respecto a una determinada clase.

En este sentido, la seleccién de atributos se ha convertido en el punto clave de gran
parte de la investigacion en areas en las que intervienen conjuntos de datos de alta
dimensién. Entre estas areas se encuentran el procesamiento de textos, la expresion
genética y la quimica combinatoria (Sui, 2013).

Un método de selecciéon de atributos tiene tres componentes: la definicion del
criterio de evaluacién (e.g., la relevancia de los atributos), la estimacién del criterio
de evaluacién (i.e., la medida) y las estrategias de bisqueda para la generacion de
subconjuntos de atributos candidatos.

Con relacién a las medidas de evaluacion, se han propuesto varios criterios para
evaluar los atributos y determinar su importancia. Cabe destacar que basado en los
criterios de evaluacion, los metodos de seleccion de atributos pueden ser divididos en
envolvente (wrapper), filtro (filter) y embebido (embedded).

En los métodos del tipo filtro, la evaluacién del subconjunto de atributos se lleva
a cabo por medio de la valoracion de las propiedades intrinsecas del dato, tales como
la distancia, la consistencia, la entropia y la correlacion.

Esta estrategia no considera ninguna relacion con el algoritmo de aprendizaje por

lo que son mucho mas eficientes en términos de recursos computacionales ya son eje-
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cutados como una etapa previa y denominada de preprocesamiento.

Aunque la literatura ofrece una amplia y variada gama de métodos de seleccién
de atributos de tipo filtro, en la mayoria de los casos, se trata inicamente de la iden-
tificacion de atributos irrelevantes y redundantes, donde un aspecto importante que
habitualmente se descuida es la complementariedad de atributos (Guyon and Elisse-
eff, 2003; Chen et al., 2015) (también conocida como sinergia (Zeng et al., 2015a) o
interaccién (Jakulin and Bratko, 2003a)).

Los atributos que interactiian son aquellos que parecen ser irrelevantes o poco
relevantes para la clase cuando son considerados individualmente, pero que cuando se
combinan con otros atributos, pueden tener una alta correlaciéon con la clase (Zeng
et al., 2015b).

Una motivacion para el desarrollo de esta tesis, es que la interaccién de atributos
ha recibido una atencién considerable en los tultimos tiempos y despierta cada vez mas
la atencion de los investigadores (Zeng et al., 2015b,a).

Entre otras razones, es que a lo largo de las décadas, los métodos de seleccion de
atributos han evolucionado desde los simples algoritmos de clasificaciéon de relevancia
univariante, pasando por los de compensacion de relevancia-redundancia; hasta los mas
sofisticados enfoques basados en las dependencias multivariantes en los tltimos afos.

Esta tendencia a capturar la dependencia multivariante tiene como objetivo obtener
informacién tunica sobre la clase a partir de lo que en este estudio se define como
intercooperacién entre atributos.

Es por ello, que se pretende en esta tesis proponer formas de detectar, medir
e identificar cuales son las asociaciones entre atributos que aportan colectivamente
informacion tnica acerca de la variable explicada o clase del caso y sus implicancias en

la busqueda de un subconjunto minimo de atributos relevantes.

A.1.1 Objetivos

A.1.1.1 Objetivo General

Examinar la dependencia multivariante categorica mediante su deteccién, cuantifi-
cacion y caracterizacion orientado al proceso de seleccion de atributos aplicado en

la tarea de clasificacion de la mineria de datos.

A.1.1.2 Objetivos Especificos

o Definir y explorar una medida de dependencia multivariable basado en la teoria

de la informaciéon como lo es la Incertidumbre Simétrica Multivariada (MSU,
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Multivariate Symmetrical Uncertainty).

e Determinar los limites de las medidas de informacién multivariables en las es-

trategias de busqueda maés utilizadas en el proceso de Seleccién de Atributos.

» Establecer y caracterizar las nociones concernientes a la dependencia multivariada

en el contexto de la Seleccion de Atributos.

o Elaborar una revisién sistemaética del estado del arte sobre los heuristicos de se-
leccion de atributos basados en la deteccion y /o cuantificacion de la dependencia

multivariada.

e Idear un heuristico para la seleccion de atributos mediante el aprovechamiento

de la deteccion de la dependencia multivariante.

A.1.2 Contribuciones de la Tesis

En este trabajo de tesis, se han abordado diferentes aspectos clave relacionado con la
dependencia multivariable en el contexto de la seleccién de atributos. Las aportaciones

mas significativas de esta tesis son expuestos a continuacién:

e Definicién y andlisis de la Incertidumbre Simétrica Multivariada (MSU, Multi-
variate Symmetrical Uncertainty) como medida de informacién de orden superior

aplicable al proceso de Seleccién de Atributos.

o Estudio del rendimiento del M SU bajo densidades de datos con patrones cono-
cidos en la practica y con conjuntos de datos reales de interés para el pais y la

region.

o Formulacion genérica y caracterizacién de las nociones referente a la seleccion de

atributos asistido por intercooperacion.

o Revision del estado del arte acerca de los heuristicos de seleccion de atributos
basados en la dependencia multivariable donde se resume las contribuciones de
los diferentes enfoques encontrados en la literatura. Ademds, se presentan los
problemas y retos actuales para identificar los métodos mas prometedores dado

los vacios especificos del conocimiento en el tema.

o Propuesta de un método novedoso de seleccion de atributos basado en la particion
del espacio de busqueda de atributos y la intercooperacion de los mismos. Este

método utiliza KMedoids para la particion en subespacios, ademas de utilizar
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medidas basadas en informacién y consistencia para abordar la intercooperativi-

dad.

e Desarrollo de un toolbox implementado en PYTHON para realizar seleccién
de atributos usando medidas de dependencia multivariadas. Este toolbox im-
plementa los métodos principales basados en la intercooperaciéon de atributos,

ademas del método propuesto.

En adicién, cabe destacar que en la busqueda de soluciones y mejoras a las difer-
entes cuestiones planteadas, han surgido nuevas ideas e inquietudes no exploradas con
profundidad. Estos temas de trabajo constituyen la semilla para nuevas lineas de in-

vestigacion a partir de la presente tesis.

A.1.3 Publicaciones

Los capitulos principales de esta propuesta de tesis doctoral se derivan de los siguientes

articulos publicados o sometidos en proceso de revision.

o Sosa-Cabrera, G., Gémez-Guerrero, S., Garcia-Torres, M., & Schaerer, C. E.
(2023). PART _FS: A feature selection method based on partitioning and inter-

cooperation. Status: In review.

o Sosa-Cabrera, G., Gémez-Guerrero, S., Garcia-Torres, M., & Schaerer, C. E.
(2023). Feature selection: a perspective on inter-attribute cooperation. Interna-

tional Journal of Data Science and Analytics, 1-13.

o Sosa-Cabrera, G., Garcia-Torres, M., Gémez-Guerrero, S., Schaerer, C. E.,
& Divina, F. (2019). A multivariate approach to the symmetrical uncertainty

measure: application to feature selection problem. Information Sciences, 494,
1-20.

Las publicaciones del autor en temas de investigacion relacionados incluidos en la pre-

sente tesis son:

o Sosa-Cabrera, G., Torres, M. G., Guerrero, S. G., Schaerer, C. E., & Divina,
F. (2018). Understanding a multivariate semi-metric in the search strategies for
attributes subset selection. Proceeding Series of the Brazilian Society of Compu-
tational and Applied Mathematics, 6(2).
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o Gomez-Guerrero, S., Ortiz, 1., Sosa-Cabrera, G., Garcia-Torres, M., & Schaerer,
C. E. (2021). Measuring Interactions in Categorical Datasets Using Multivariate
Symmetrical Uncertainty. Entropy, 24(1), 64.

e Gomez-Guerrero, S., Sosa-Cabrera, G., Garcia-Torres, M., Ortiz-Samudio, 1.,
& Schaerer, C. E. (2021). Multivariate Symmetrical Uncertainty as a measure for
interaction in categorical patterned datasets. Proceedings of the Entropy 2021:
The Scientific Tool of the 21st Century session Information Theory, Probability

and Statistics.

o Gomez-Guerrero, S., Garcia-Torres, M., Sosa-Cabrera, G., Sotto-Riveros, E.,
& Schaerer, C. E. (2021). Classifying dengue cases using CatPCA in combination
with the MSU correlation. Proceedings of the Entropy 2021: The Scientific Tool
of the 21st Century session Entropy in Multidisciplinary Applications.

Las publicaciones del autor en temas de investigacién relacionados no incluidos en la

presente tesis son:

e Sosa-Cabrera, G., Torres, M. G., Guerrero, S. G., Schaerer, C. E., & Div-
ina, F. (2018). Effect of Sample Representativeness in Multivariate Symmetrical
Uncertainty for Categorical Attributes. Proceedings of the Third Conference on

Business Analytics in Finance and Industry.

« Sosa-Cabrera, G., Torres, M. G., Guerrero, S. G., Schaerer, C. E. (2018). Is
it correlation or interaction?. En 111 Encuentro de Investigadores de la Sociedad

Cientifica del Paraguay.

A.2 Fundamentacion Teorica

En esta secciéon llevaremos a cabo una revision de las nociones de la teoria de la in-
formacion y de la seleccién de atributos que son mencionados a lo largo del presente
trabajo y cuyo interés radica en que pueden ser utilizados con el objeto de medir la

cantidad de informacién como una reduccién de la incertidumbre.

A.2.1 Teoria de la Informacién

A.2.1.1 Entropia.

La entropia de Shannon (H) (Shannon, 1948) de una variable aleatoria discreta X, con

{z1,...,2,} como posibles valores y la funcién de probabilidad P(X), es una medida
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de la incertidumbre en la prediccion del valor de X.

Definition 7. La entropia H(X) se define como
H(X):=— Z P(x;)logy(P(x;)), (A1)

donde P(z;) es la probabilidad de la variable X y la sumatoria se produce sobre todos
los valores posibles de X, denotado por x;. H(X) puede ser también interpretado como
una medida de la variedad inherente a X, o la cantidad de informacion que es necesaria

para predecir o describir el resultado de X.

Entropia Conjunta. Para variables independientes (X,Y) con P(X,Y’) como dis-

tribucién conjunta de probabilidad se tiene la entropia conjunta H(X,Y).

Definition 8. La entropia conjunta H(X,Y') estd definida como

H(X,)Y):=— Z Z P(z,y)logs[P(z,y)]. (A.2)

zeX yeY

Entropia Condicional. La entropia condicional H(X|Y) cuantifica la cantidad de
informacion necesaria para describir el resultado de X dado que el valor de otra variable

aleatoria discreta Y es conocido.

Definition 9. La entropia condicional estd definida como

H(X|Y) = =3 | P(y) D Plaily;) logo(P(xily;)) |

J

donde P(y;) es la probabilidad a priori del valor y; de 'Y, y P(x;|y;) es la probabilidad

a posteriori de un valor x; para la variable X puesto que el valor de la variable Y es

Yj-

Propiedades de la Entropia
La entropia de Shannon satisface las siguientes propiedades (Cover and Thomas,

2012):
1. H(X) > 0. No-negatividad.
2. Hy(X) = (log, a)H,(X). Cambio de base del logaritmo.

3. H(X|Y) < H(X). El condicionamiento reduce la entropfa siendo H(X|Y) =
H(X) siy solamente si X e Y son independientes.
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4. H(Xy,...,X,) <X, H(X;), como cota superior y llegando a la igualdad si y

solamente si las variables aleatorias X; son independientes.

5. H(X) <log(X), como cota superior y llegando a la igualdad si X es una variable

aleatoria uniforme.

Theorem A.2.1. (regla de la cadena) (Cover and Thomas, 2012). Dadas dos variables
aleatorias X e'Y la entropia conjunta estd dada por H(X,Y) = H(X)+ H(Y|X).

Una extension del Teorema A.2.1 para X e Y dado Z esta expresado por el corolario
Corollary A.2.2. H(X,Y|Z)=H(X|Z)+ HY|X, Z).
Una generalizacion del Teorema A.2.1 estd dado por

Theorem A.2.3. (regla de la cadena general) (Cover and Thomas, 2012). En general,
se cumple la regla de la cadena para miltiples variables aleatorias: H(Xy,...,X,) =
S H(X X, X))

A.2.1.2 Ganancia de la Informacion

Conocido alternativamente como Informacion Mutua (Shannon, 1948), la Ganancia
de la Informacion (IG(X|Y)) (Quinlan, 1993) de una variable X con respecto a otra
variable dada Y mide la reduccién de la incertidumbre acerca del valor de la variable

X cuando el valor de Y es conocido.

Definition 10. La informacion ganada de X al conocer Y se define como
IGX|Y):=H(X)—- H(X|Y). (A.3)

IG mide cuanto el conocimiento de Y hace que el valor de X sea mas facil de
predecir, y por tanto, el mismo puede ser utilizado como una medida de correlacion.

Observe que como casos extremos son obtenidos
1. si X e Y son independientes, entonces IG(X|Y) =0,y

2. si X e Y son completamente correlacionados entonces H(X|Y) = 0 y por tanto
IG(X|Y) = H(X).

En general, para variables aleatorias cualesquiera X, Z e Y, IG(X|Y) > IG(Z|Y)
significa que conociendo el valor de Y la reduccion en la incertidumbre acerca de X es
mayor que la reduccion en la incertidumbre acerca de Z, si X esta mas correlacionado

a Y que este a 7.

83



Se puede demostrar que /G(X;Y’) es una medida simétrica, lo cual es una conve-
niente propiedad para una medida entre dos variables ya que el orden entre ellas no
altera el resultado de la medicién. Es decir, IG(X;Y) = IG(Y; X).

Sin embargo, /G presenta un inconveniente: cuando X y/o Y tiene més valores
posibles, ellas aparecen con mayor correlacion, por tanto, IG tiende a ser méas alto
cuando se presentan variables con mayor nimero de valores posibles. Esto es equiva-
lente a decir que el IG es dependiente de la cardinalidad.

Propiedades de la ganancia de la informacion

—_

L IG(X;Y) > 0.

2. IG(X;Y) = H(X) — H(X|Y).

3. IG(X;Y)=H(Y) - HY|X).

4 IGX;Y)=H(X)+H(Y)— H(X,Y).
5. IG(X;Y) = IG(Y; X) (simetria).

6. IG(X; X) = H(X) (informacién propia).

Dada la relacién con la entropia, para la ganancia de la informacién se puede

establecer el teorema

Theorem A.2.4. (regla de la cadena) (Cover and Thomas, 2012). Para un con-
junto de n variables {X1,...,X,} e Y la ganancia de la informacion esta dada por

[G(Xl,,Xn,Y) = ?:1 [G(X“Y’Xl,,XZ,1>

La unidad de informacién del /G depende de la base del logaritmo utilizado. En
el presente trabajo se ha utilizado la base 2 por lo que la unidad se encuentra en bits.

Note que el IG es una semi-métrica (Kraskov et al., 2003) que cumple con los axiomas
1. IG(X;Y) > 0 (no negatividad).
2. IG(X;Y)=0 <= X =Y (son independientes).
3. IG(X:;Y)=1IG(Y;X) (simetria).

Incertidumbre Simétrica. El valor del IG puede ser normalizado utilizando
ambas entropias, originando la medida de Incertidumbre Simétrica (SU)(Fayyad and

Irani, 1993).

Definition 11. La incertidumbre simétrica de dos variables aleatorias X, Y se define

como

(A.4)

SU(X,Y) =2 [ [OXY) ] |

H(X)+H(Y)

84



Observe que, (a) si X e Y son independientes entonces SU(X,Y) = 0; y (b) si
X e Y estan completamente correlacionados entonces IG(X|Y) = H(X) = H(Y') por
tanto SU(X,Y) = 1. Como podemos apreciar, el SU restringe sus valores al rango
entre 0 y 1, es decir, SU € [0, 1].

Correlacién Total. De manera a generalizar la ganancia de informacion, se intro-
duce la Correlacién Total o Multi-informacién (McGill, 1954; Watanabe, 1960). Esto
permite establecer el nivel de correlacion de n variables aleatorias que conforman un

conjunto.
Definition 12. Dado un conjunto de n variables aleatorias {Xi,...,X,}, la cor-
relacion total se define como
i=1
donde
H(X1,) = H(Xy,...,X,) = — Z . Z P(z1,...,x,) logy[P(x1,...,2,)]  (A.6)
1

Tn

es la entropia conjunta de las variables aleatorias Xy, ..., X,.

A.2.1.3 Incertidumbre Simétrica Multivariada

La incertidumbre simétrica multivariada (M SU) es propuesta en (Sosa-Cabrera et al.,
2019) como una generalizacién del SU basada en la correlacion total, con el objeto de

cuantificar la redundancia o dependencia existente entre dos o méas variables.

Definition 13. Dado un conjunto de n variables aleatorias {Xi,...,X,}, la incer-

tidumbre simétrica multivariada se define como

n C(X;.
MSU(Xy0) = —— [ ?:(1 Hl("))()] : (A7)

Al igual que en el SU, el rango de valores del M SU también se encuentra entre
0, 1].

Cabe destacar que a diferencia de la desviacion estandar y otras medidas que
estan orientadas a datos numéricos, la SU y la M SU pueden ser aplicadas a niimeros
discretos y a variables aleatorias categoricas. Esta propiedad es conveniente para el
mundo multivariado de atributos de diferentes tipos que aparecen frecuentemente en

el mismo conjunto de datos.

85



Ademas, dado que SU y M SU dependen tinicamente de probabilidades, las mismas
son invariantes ante traslaciones y cambios de escala aplicados a cualquier X, siempre

y cuando la funcién de probabilidad permanezca igual.

A.2.1.4 Divergencia de Kullback-Leibler

La divergencia de Kullback-Leibler (D, por sus siglas en inglés) es una medida basada
en la teoria de la informaciéon ampliamente utilizada para calcular la diferencia entre

dos distribuciones de probabilidad P y ) que esta dado por

Dice(P.Q) = 3 Pl 1og< z)+ZQ (Qgg) (A8)

A.2.1.5 Estrategia de Separabilidad de Clases

En base a la divergencia de Kullback-Leibler, para medir la relevancia y la redundancia
de un atributo F con relacién a la etiqueta de clase ¢;(¢; € C') dado el subconjunto de
atributos seleccionados S, se tiene la denominada estrategia de separabilidad de clases

(CS, por sus siglas en inglés) (Zhang et al., 2013) definida mediante

Dif fs(F,c;) :== > Pe,(fs) - Dxr(Pc,(F|fs)||P(F|fs))- (A.9)
fes

A.2.2 Consistencia de un Conjunto de Datos

Las medidas de consistencia, en este sentido, evalian la irrelevancia colectiva de un
conjunto de atributos en funcién a las etiquetas de clase, es decir, los valores posibles

de la variable explicada.

Definition 14. Un conjunto de atributos de un conjunto de datos es coherente, si,
y solo si, determina univocamente las clase de cada caso, es decir, dos instancias
o ejemplos del conjunto de datos que son idénticos con respecto a los valores de los

atributos tienen la misma etiqueta de clase o caso.

Por lo tanto, una funciéon de medida de consistencia devuelve el valor cero, si, y sélo
si, su entrada es un conjunto de atributos consistente (Shin et al., 2017). Un ejemplo
importante de la medida de consistencia es la medida de consistencia binaria, definida

como sigue:

0, si{fi,...,fn} es consistente;
Bu(fi,.. gy =g S ik (A10)

1, en otro caso.
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A.2.3 Seleccién de Atributos

De ahora en adelante, llamaremos atributo a una variable aleatoria discreta o categorica
presente en el conjunto de datos considerado.

La seleccion de atributos es la tarea de obtener un subconjunto de atributos del
menor tamano posible a partir de los originales presentes en un conjunto de datos dado
y que proporcionen la mayor parte de la informacion util. Esto es, sin que se vea
afectada la predictibilidad de la clase.

Para ello se dejan de lado los atributos detectados como irrelevantes como también
los que son redundantes, efectuando asi una reduccion de dimensionalidad que resulta
en un subconjunto méas simple y mas adecuado para la prediccién deseada.

Ademas de la simplificacion del modelo, la reduccion de dimensionalidad lograda
a través de una apropiada seleccién de atributos, disminuye el riesgo de sobreajuste
(overfitting) del modelo. Un modelo sobreajustado es aquel que ha exagerado su ade-
cuacion a los casos de aprendizaje, con el consecuente deterioro en la precision de sus
predicciones para casos nuevos.

Los métodos de selecciéon de caracteristicas pueden ser clasificados en filtros (fil-
ter), envolventes (wrapper) y embebidos (embedded). En los métodos tipo envolvente la
evaluacion del subconjunto de caracteristicas se realiza por medio del propio algoritmo
de aprendizaje, el cual funciona en este respecto como una especie de caja negra. Esta
estrategia posee una alta precision en cuanto a la calidad de los conjuntos de carac-
teristicas, sin embargo, son costosos en términos de recursos computacionales como asi
también presentan un alto riesgo de sobre-ajuste. En los métodos tipo filtro, la evalu-
acion del subconjunto de caracteristicas se lleva a cabo por medio de la valoracion de
las propiedades intrinsecas del dato, tales como la distancia, la consistencia, la entropia
y la correlacion. Esta estrategia no considera ninguna interacciéon con el algoritmo de
aprendizaje por lo que son mucho mas eficientes en recursos computacionales que los
métodos tipo envolvente, pero en contrapartida los resultados de la clasificacién po-
drian ser peores. En los métodos tipo embebido la seleccién de caracteristicas estéd
incluida en el mismo como una parte no separable, es decir, se realiza la seleccién de
caracteristicas durante la induccién del clasificador. Los tipos de medidas utilizados
en la evaluacion de las caracteristicas como parte del proceso de la seleccion de los
mismos, se distinguen en distancia, medida de informacién, dependencia estadistica,
consistencia y error del clasificador. La medida de distancia también es conocida como
medida de discriminacién o de similitud y la mas extendida es la distancia euclidea.
El conjunto de atributos a elegir serd aquel en el que la separacion entre dos regiones

sea maxima y la separacion entre los casos de la misma clase sea minima. Los métodos
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basados en informacién utilizan medidas derivadas de la teoria de la informacién. La
informacion contenida en los atributos es tratada como magnitud fisica y dicha infor-
macion se caracteriza mediante la entropia. Los métodos basados en dependencia (o
correlacién) se basan en el estudio de la relacion estadistica existente entre los atrib-
utos y la clase con el fin de predecir el valor de una en funcién del valor de la otra.
La métodos basados en la medida de consistencia pretende encontrar el subconjunto
minimo de variables con las que es posible construir una hipétesis consistente con el
conjunto de entrenamiento. Es decir, los valores de los atributos de dos casos deben
ser distintos en caso de que pertenezcan a clases distintas. Finalmente, los métodos
basados en la tasa de error emplean el error del clasificador inducido como medida de
calidad donde el subconjunto a encontrar es aquel que tenga menor tasa de error en el

aprendizaje.

Relevancia de atributos. Sea A el conjunto de todos los atributos, A; € A uno
de ellos y S; = A — {A;}, como el complemento de A; respecto de A. Sea C' la clase
cuya informacion se desea predecir. A continuacién se dard una clasificacion de los

atributos conforme su relevancia o irrelevancia.

Definition 15 (Relevancia fuerte). El atributo A; tiene una relevancia fuerte si y

solamente si

P(ClA;, i) # P(C|S), (A.11)

donde P(C|A;, S;) es la probabilidad de suponer el valor de C' conociendo previamente
los valores de A; y 5.
Un atributo con relevancia fuerte es aquel que contiene informacién tnica acerca

de la clase, es decir, no puede descartarse del conjunto A sin alterar la predictibilidad
de C.

Definition 16 (Relevancia débil). El atributo A; tiene una relevancia débil, si y sola-

mente st,

P(ClA;, S;) = P(C|S;) (A.12)

y existe S; C S; tal que
P(CIF,,8) # P(CIS). (A13)

Un atributo con relevancia débil no es relevante para A, es decir, no cambia la
informacion sobre C' si se la descarta de A. Sin embargo, si es relevante para un

subconjunto de A.
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Definition 17 (Irrelevancia). A; se considera irrelevante, si y solamente si,
P(C|A;, S)) = P(ClS)) VS CS,. (A.14)

Un atributo irrelevante no aporta informacién alguna sobre C, asi debe descartarse

para la solucion final.

Redundancia de atributos. Se dice que un atributo es redundante si su informacién

estd completamente contenida en uno o mas atributos.

Definition 18 (Manta de Markov). Dado un atributo A;, sea M; C A—{A;}. Se dice

que M; es una manta de Markov para A; si y solamente si
P(A—M; —{Ai} [A, M;) = P(A— M; — {A;i} | M) (A.15)

Una manta de Markov de un atributo es en esencia un conjunto de atributos que
contiene toda la informacién del atributo. Puede verse intuitivamente como una manta
que envuelve, oculta al atributo, pues ya aporta toda la informaciéon que podria aportar

el atributo de los demas elementos de A.

Definition 19 (Redundancia). Sea G C A el conjunto actual de atributos. Un atributo
se considera redundante (y debe ser descartado de G), si y solamente si, es débilmente

relevante y tiene una manta de Markov dentro de G.

De este modo, se considera un atributo redundante si su informacién esta comple-
tamente contenida en un subconjunto de A que no lo incluye.

Un método de seleccion de atributos del tipo filtro intenta seleccionar el subcon-
junto de atributos de tamano minimo segin un bucle de generaciéon de subconjuntos
(por estrategia de bisqueda) y su evaluaciéon (por medida) hasta que se satisface algin
criterio de parada. A partir de estos pasos basicos, en el Algoritmo 1 se representa un
algoritmo abstracto para la seleccion de atributos que muestra el comportamiento de

cualquier método de filtrado de forma unificada.

A.3 Estado del Arte

El objetivo de este trabajo es estudiar el impacto de las interacciones de orden superior
en los métodos del tipo filtro para la seleccion de atributos que utilizan principalmente
medidas basadas en la teoria de la informacion. Por tanto, nos centramos en revisar

los métodos en la literatura que adoptan este enfoque.
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Algorithm 2: Una generalizacion del método de filtrado
Entrada: Conjunto de atributos candidatos F'; un subconjunto de atributos
de partida para la bisqueda Sy y un criterio de parada 9.
Salida: subconjunto de atributos mas informativos Sy,cjor-

1 Smejor < So // inicializar Sp.cjor-
2 Ymejor 4= evaluar(So, F; M) // evalvar S mediante la medida M.
3 repetir

4 S <« estrategia busqueda(F), Smejm«) // generar el siguiente subconjunto.
5 v evaluar(S, F, M) // evaluar S mediante la medida M.

6 si vy es mejor que Yyesr €Ntonces

7 Ymejor <= 7Y // actualizar Ymejor-

8 Smejm« <+ S // actualizar Smejor -

9 fin

10 hasta que ¢ se cumple
11 retorna Sy,cjor

En este sentido, cabe destacar que pocos estudios han examinado la informacion
sobre las interacciones, especialmente las de alto nivel. Dado que es dificil medir
directamente la interaccion y que las interacciones candidatas crecen exponencialmente
con el nimero de atributos (Tang et al., 2018). Asi, en lugar de calcular directamente los
términos de interaccion de quinto orden, que son costosos computacionalmente, FJMI
(Tang et al., 2019) tuvo en cuenta las interacciones de segundo a quinto orden entre los
atributos y la clase para capturar las interacciones. El enfoque se basa en el hecho de
que la informacion mutua conjunta de cinco dimensiones puede descomponerse en una
suma de interacciones de segundo orden, que es mas facil de calcular (Sosa-Cabrera
et al., 2023).

En (Vinh et al., 2016) se propone un método de seleccién de atributos basado en
M1 de mayor dimensién denominado RelaxtMRMR. Para capturar las interacciones de
atributos de orden superior, los autores identificaron los supuestos que se pueden relajar
para descomponer el criterio de informacién mutua conjunta completa en cantidades
M1 de menor dimensién (Sosa-Cabrera et al., 2023).

Para tratar explicitamente la interaccion entre atributos, en (Zeng et al., 2015a)
se propone un método de filtrado basado en la complementariedad denominado IWFS.
El enfoque se basa en factores de peso de interaccién, una variacién de la interaccién
de tercer orden que puede medir la redundancia y la complementariedad entre los
atributos (Sosa-Cabrera et al., 2023).

El método INTERACT (Zhao and Liu, 2009) encuentra atributos que interactian
basandose en una métrica de ordenacién de atributos que utiliza la consistencia de los

datos. A diferencia de una evaluacién basada en la informacién mutua, la medida de
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inconsistencia es monotona, lo que permite segtin los autores una busqueda eficiente
para explorar las interacciones entre los atributos (Sosa-Cabrera et al., 2023).

En (Pawluk et al., 2019b) se propone un método de seleccion de atributos denom-
inado IIFS que considera las interacciones de tercer y cuarto orden. Basandose en
la informacién de interaccion, demuestran algunas propiedades tedricas del novedoso
criterio y la posibilidad de que pueda extenderse al caso de términos de orden incluso
superior (Sosa-Cabrera et al., 2023).

Para retener aquellos atributos con la mayor complementariedad con el subconjunto
de atributos previamente seleccionado en el progreso del método, en (Li et al., 2020b)
se propone un nuevo algoritmo denominado FS-RRC' que calcula la puntuacion de
complementariedad de dos atributos y la clase, es decir, una interaccion de tercer
orden (Sosa-Cabrera et al., 2023).

En (Singha and Shenoy, 2018) se propone un método adaptativo denominado SAFE
que utiliza una funciéon de costo adaptativo de tercer orden que utiliza la relacién
redundancia-complementariedad para actualizar automaticamente la regla de compro-
miso entre relevancia, redundancia y complementariedad. Este enfoque utiliza la es-
trategia de busqueda el primero el mejor, que ofrece segin los autores la mejor solucién

de compromiso (Sosa-Cabrera et al., 2023).

A.4 Meétodo Propuesto

A diferencia de las técnicas actuales basados en intercooperaciéon de atributos, nue-
stro método propuesto PART _FS, se basa en la particion del espacio de btisqueda en
subespacios y en la aplicaciéon de medidas tanto basado en la informacién como en
consistencia para la deteccion de dependencias multivariadas no-lineales.

Cabe destacar que el completo detalle del nuevo criterio propuesto aparecera en

una publicacién posterior del autor principal®.

A.5 Resultados Numéricos

El rendimiento del método propuesto PART _FS, se comparé con los resultados de otros
5 métodos métodos: FIJMI, ITFS, SAFE, FS_RRC y RELAX_MRMR considerados de
tercera generacion (Sosa-Cabrera et al., 2023).

Los experimentos fueron realizados sobre 3 escenarios con datos sintéticos y con
un total de 20 conjuntos de datos reales del repositorio UCI (Markelle Kelly, 2023)

'https://scholar.google.com/citations?user=Wrjw2XYAAAAJ
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de distintos ambitos: ciencias de la vida, ciencias fisicas, ingenieria, negocios, ciencias
sociales y otros.

Las caracteristicas de estos conjuntos de datos pueden ser binarias, discretas,
categoricas o continuas. Las caracteristicas continuas se discretizaron en 10 inter-
valos iguales utilizando el método de discretizacion de igual rango. La discretizacion
se realiza como un paso de preprocesamiento para todos los datos antes de la etapa de
seleccion de atributos.

Se utilizaron 7 clasificadores para evaluar la calidad de los subconjuntos selecciona-
dos a saber: Naive Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbor-
hood (kNN), Decision Tree based Classification (J48), Random Forest (RF), Bayes Net
con K2 para la busqueda de las estructuras de red (BN_K2) donde 5 es el maximo
nimero de ancestros y Part Rules Based Classifier (PRBC). La implementacion uti-
lizada de todos los clasificadores se encuentran disponibles en la herramienta WEKA
(Eibe et al., 2016).

La precision media de la clasificacion se utiliza como medida de la calidad de los
atributos seleccionados. La validacion cruzada de 10 iteraciones se emplea al procesar
la seleccion y validacion de atributos; por lo tanto, cada muestra de datos se utiliza
una vez para la validacion.

Los resultados, como se muestra en la figura A.1, indican que los conjuntos de atrib-
utos seleccionados por el método propuesto PART_FS permiten una mayor precision
en la tarea de clasificacion.

Cabe mencionar finalmente, que el completo detalle de todos los resultados obtenidos

aparecerd en una publicacién posterior del autor principal?.

A.6 Conclusiones y Trabajo Futuro

La llegada del Big Data y especialmente el advenimiento de conjuntos de datos con
alta dimensionalidad, ha traido una importante necesidad de identificar los atributos
relevantes a partir de los datos. En este escenario, la importancia de la seleccion de
atributos estd fuera de toda duda y en ese cometido se han desarrollado diferentes
métodos, empero a dia de hoy, los investigadores no se ponen de acuerdo sobre cuél es
el mejor método para un entorno determinado (Bol6n-Canedo and Alonso-Betanzos,
2018).

En este trabajo, primero, introducimos la medida de Incertidumbre Simétrica Mul-

tivariada (MSU, por sus siglas en inglés), como una extensién de la Incertidumbre

’https://scholar.google.com/citations?user=Wrjw2XYAAAAJ
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Figure A.1: Precisién de clasificacion sobre los atributos seleccionados por PART_FS en com-
paracion a los demas 5 métodos del estado del arte.

Simétrica (SU, por sus siglas en inglés) al caso multivariado. Para evaluar la prop-
uesta referida, se han realizado varios experimentos con conjuntos de datos sintéticos
y reales. Los resultados han confirmado que el MSU es una medida de correlacién
multivariada confiable para variables nominales, con propiedades prometedoras, ca-
paz de detectar dependencias o interacciones lineales y no-lineales. Para una revision
profunda de este t6pico de la tesis, véase la publicacién® (Sosa-Cabrera et al., 2019).

En adicién, proporcionamos un estudio sistematico del estado del arte sobre la
asistencia y explotacion de la intercooperacion de atributos en el proceso de seleccion de
atributos. En este sentido, hemos examinado un total de 27 métodos filtro de seleccién
de atributos que adoptan este enfoque identificado, cubriendo lagunas importantes en
el campo de los métodos de ultima generacion, un tema que hasta ahora no habia
recibido mucha consideracién en la literatura. Para acceder al examen bibliografico
exhaustivo, véase la publicaciéon? (Sosa-Cabrera et al., 2023).

Y, finalmente, se propone un enfoque novedoso de seleccion de atributos basado
en la particién del espacio de busqueda de atributos y la intercooperacion de atributos

denominado PART _FS. PART _FS es un marco particularmente versatil para datos de

3https://doi.org/10.1016/j.ins.2019.04.046
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alta dimension de naturaleza compleja. En este sentido, comparamos el rendimiento
de PART _FS en escenarios simulados y conjuntos de datos reales con varios métodos
recientes de seleccién de atributos en combinaciones con diferentes clasificadores. Los
resultados muestran que el método propuesto basado en la particion y la intercoop-
eracién supera a los métodos de comparacion y sobresale en una variedad de problemas
con diferentes caracteristicas. Un completo abordaje sobre este topico aparecera en una
publicacién posterior del autor principal®.

Sin embargo, la seleccién de atributos sigue siendo y seguird siendo un campo activo
que se rejuvenece incesantemente para responder a nuevos desafios (Liu et al., 2010).
Por ejemplo, dado que la precisiéon de M SU depende de muestras que sean totalmente
representativas, un principal inconveniente de esto (tamano de muestra basado en
representatividad total) consiste en el hecho de que el tamano de la muestra aumenta
con la cardinalidad multivariada. Esto implica tamanos de muestra mas grandes para
lograr una precisiéon prescrita. Por otra parte, el rendimiento de PART _FS podria
mejorarse ain mas examinando cuidadosamente las atributos de los conjuntos de datos
reales, modificando el criterio de particién y optimizando los parametros del modelo

en consecuencia. El trabajo futuro se centrara en estos puntos.

Shttps://scholar.google.com/citations?user=Wrjw2XYAAAAJ
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