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Highlights 

 

 In liberalized electricity markets, ongoing uncertainties play a major role to delay 

the decision-making of new power generation investments. 

 A valuation framework of power plant investments, based on Real Options 

Analysis, is integrated with a long-term electricity market model. 

 The decision-making model considers that the addition of new power capacity is 

guided by the economic value of the option to defer projects under uncertainty. 

 The main contribution is the integration of decision and option valuation theory in a 

long-term model for reproducing investment cycles observed in electricity markets. 

 

Abstract 

 

In liberalized electricity markets, the investment postponement option is deemed 

decisive for understanding the addition of new generating capacity. Basically, it refers 

to the possibility for investors to postpone projects for a period while waiting for the 

arrival of new and better information about the market evolution. When such 

development involves major uncertainties, the generation business becomes riskier, and 

the investors’ “wait-and-see” behavior might limit the timely addition of new power 
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plants. In that sense, the literature provides solid empirical evidence about the 

occurrence of construction cycles in the deregulated electricity industry. However, the 

strategic flexibility inherent to the option to defer new power plants has not been yet 

rigorously incorporated to investment signals in existing market models. Therefore, this 

paper proposes a novel methodology to assess the long-term development of liberalized 

power markets based on a more realistic approach for valuing generation investments. 

The work is based on a stochastic dynamic market model, built upon System Dynamics 

simulation approach. The decision-making framework considers that the addition of 

new capacity is driven by the economic value of the strategic flexibility associated to 

defer investments under uncertainties. Thus, the value of the postponement option is 

quantified in monetary terms through Real Options Analysis. Simulations confirm the 

cyclical behavior of the energy-only market in the long run, as suggested by the 

empirical evidence found in the literature. In addition, sensitivity analysis regarding 

some relevant exogenous variables depicts an even more fluctuating evolution of the 

capacity due to the combination of strong demand growth rates with large volatilities. 

Finally, the model validity is assessed through a formal procedure according to the 

scope of System Dynamics modeling approach. 

 

Key words: Power Generation; Power Market; Real Options; Stochastic Simulation; 

Strategic Flexibility; System Dynamics. 
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List of Abbreviations 

 

ASC  Aggregate Supply Curve 

CC  Gas-fired Combined Cycles 

CLD  Causal Loop Diagram 

CVaR  Conditional Value at Risk 

DPE  Dynamic Programming based on the Expected present value. 

GT  Gas Turbines 

GW  Gigawatt. 

HC  Coal-fired power plants 

IEA  International Energy Agency. 

IRR  Internal Revenue Rate 

LDC  Load Duration Curve. 

LOLP  Lost of Load Probability 

MW  Megawatt. 

MWh  Megawatt-hour. 

NPV  Net Present Value 

PDC  Price Duration Curve. 

PI  Profitability Index 

ROA  Real Options Analysis 

SD  System Dynamics 

SFS  Stock-and-Flow Structure 

VaR  Value at Risk 

VOLL  Value of Lost Load 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

List of Symbols 

 

Roman symbols 

𝑖 Subscript to individualize generating technologies [adim] 

𝑗 Subscript to individualize vintages from each generating technology [adim] 

𝑡 Dynamic time [month] 

𝑑 Annual probability of duration of a given load level 𝐿 [adim] 

𝐷𝑖 Annual probability for one MW of new capacity from technology 𝑖 to operate 

with market price over own marginal costs [adim] 

𝐷𝑖𝑗 Annual probability for the capacity of vintage 𝑗 from technology 𝑖 to operate 

with market price over own marginal cost [adim] 

𝐷𝑑𝑒𝑓 Annual probability of deficit duration [adim] 

𝑑𝑡𝑖 Time increment between the 𝑡 and 𝑀 for technology 𝑖 [month] 

€ Symbol of currency (Euro) 

𝐹𝑃𝑖 Fuel price of capacity from technology 𝑖 [€/MWh] 

𝐹𝑃𝑖
𝑟 Stochastic realization for the fuel price of capacity from technology 𝑖 [€/MWh] 

𝑔𝐹𝑃𝑖
 Growth rate for the fuel price of the capacity from technology 𝑖 [%/year] 

𝑔𝑚 Growth rate for the minimum demand [%/year] 

𝑔𝑀 Growth rate for the maximum demand [%/year] 

𝑔𝐹𝑃𝑖

𝑟  Stochastic growth rate for the fuel price of capacity from technology 𝑖 

[%/year] 

𝑔𝐿 Long-term growth rate for the maximum and minimum demand [%/year] 

𝑔𝐿
𝑟 Stochastic growth rate for the maximum and minimum demand [%/year] 

𝑔𝐾
𝑟  Stochastic growth rate for the total operating capacity [%/year] 

𝐼𝐶𝑖 Investment cost for technology 𝑖 [€/MW] 

𝐾𝑇 Total operating capacity [MW] 

𝐾𝑇
𝑎𝑣𝑎𝑙 Available operating capacity [MW] 

𝐾𝑇
𝑟 Stochastic realization of expected total operating capacity [MW] 

𝐾𝑇
𝑈𝐶 Total capacity under construction [MW] 
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𝐾𝑇
𝑈𝐶∗

 Total capacity under construction in the long-run equilibrium [MW]. 

𝐾𝑖 Capacity from technology 𝑖 [MW] 

𝐾𝑖
𝑈𝐶 Capacity under construction from technology 𝑖 [MW] 

𝐾𝑖𝑗 Capacity from technology 𝑖 residing in vintage 𝑗 [MW] 

𝐾𝑖𝑗
𝑐𝑢𝑚 Aggregate system capacity up to vintage 𝑗 from technology 𝑖, according to the 

dispatch merit order [MW] 

�̇�𝑖j
𝑖𝑛 Rate at which capacity enters vintage 𝑗 from technology 𝑖 [MW/month] 

�̇�𝑖j
𝑜𝑢𝑡 Rate at which capacity abandons vintage 𝑗 from technology 𝑖 [MW/month] 

𝑖𝑚𝑖 Investment multiplier for technology 𝑖 [adim] 

𝑖𝑚𝑖
𝑚𝑎𝑥 Maximum investment multiplier for technology 𝑖 [adim] 

𝐼𝐶𝑖 Investment cost for technology 𝑖 [€/MW] 

𝐼�̇� Investment rate for technology 𝑖 [MW/month] 

𝐼�̇�
𝑟𝑒𝑓

 Reference investment rate for technology 𝑖 [MW/month] 

𝐿 Load level exceeding an annual duration 𝑑 [MW] 

𝐿𝑚𝑖𝑛 Minimum demand [MW] 

𝐿𝑚𝑖𝑛
𝑇𝐸𝑆𝑇 Test minimum demand [MW] 

𝐿𝑚𝑎𝑥 Maximum demand [MW] 

𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇 Test maximum demand [MW] 

�̇�𝑖  Expected change in the portion of peak load covered by technology 𝑖 

[MW/month] 

𝐿𝑟 Stochastic realization of load level exceeding an annual duration 𝑑 [MW] 

𝑀 Dynamic Option Maturity [month] 

𝑀𝐶̅̅̅̅
�̅�𝑗  Marginal cost of the capacity from technology 𝑖 residing in vintage 𝑗 [€/MWh] 

𝑂𝑃�̅�𝑖
𝐴  Expected stream of operating profits for technology 𝑖 over �̅�𝑖

𝐴 [€/MW] 

𝑃𝐼𝑖 Profitability index for technology 𝑖 [adim] 

𝑞 Expected availability of generating units [adim] 

𝑟 Superscript to denoted realizations of stochastic variables [adim] 

𝑇𝑖 Lifetime for technology 𝑖 [year] 
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�̅�𝑖
𝐶  Construction lead-time for technology 𝑖 [month] 

�̅�𝑖
𝐴 Amortization period for technology 𝑖 [month] 

𝑉𝑖
∗ Optimal investment policy for technology 𝑖 [€/MW] 

𝑉𝑖
𝑐𝑜𝑛𝑡 Continuation value for technology 𝑖 [€/MW] 

𝑉𝑖
𝑒𝑥 Exercise value for technology 𝑖 [€/MW] 

 

Greek symbols 

𝛼𝑖 Factor to control the slope of the multiplier curve for technology 𝑖 [adim] 

𝛽𝑖 Factor to define the x-axis position of the multiplier curve for technology 𝑖 

[adim] 

�̅�𝑖𝑗  Average efficiency of the capacity from technology 𝑖 residing in vintage 𝑗 

[adim] 

𝜂𝑖𝑗
𝑖𝑛 Efficiency of capacity entering vintage 𝑗 from technology 𝑖 [adim] 

𝜂𝑖𝑗
𝑜𝑢𝑡 Efficiency of capacity abandoning vintage 𝑗 from technology 𝑖 [adim] 

𝜋𝑖 Annual unitary rents expected by technology 𝑖 [€/MW·year] 

𝜌 Required revenue rate for each technology [%/year] 

𝜌𝑇𝐸𝑆𝑇 Test required revenue rate for each technology [%/year]. 

𝜑 Risk-free discount rate for each technology [%/year] 

 

Symbols of the mean-reverting stochastic process 

𝑑𝑔 Expected change in a growth rate 

𝑑𝑡 Time increment 

𝑔 Growth rate 

�̅� Long-term (mean) growth rate 

𝜂 Speed of reversion towards the mean growth rate 

𝜎 Volatility of the growth rate 

𝑑𝑧 Variable following a Wiener Process 

𝜀 Normally distributed random variable 

𝜃 Correlated random variable 
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1 Introduction 

 

In the last decades, the evolution towards liberalization of electricity markets has 

pursued the main objective of improving the economic efficiency of the supply side 

(IEA, 2003). The deregulation has been founded on strictly market mechanisms, which 

has led to the unbundling of the industry and the introduction of competition, mainly in 

the generation segment. Despite many positive outcomes, the cumulated experience 

after the first stage of reforms has also raised concerns regarding the market attributes 

that needed to ensure the capacity adequacy (e.g. Rudnick et al., 2005; Arango et al., 

2006; Joskow, 2006). At first, this seems counterintuitive, since the theory of spot 

pricing, upon which the deregulation is based, theoretically provides sufficient 

investment incentives in the long-run (Caramanis, 1982). However, it has been reported 

repeatedly since the beginning of the 1990s that the liberalized power industry is instead 

prone to suffer construction cycles
1
 (Bunn and Larsen, 1992; Bunn and Larsen, 1994). 

 

Many efforts have been put in order to understand the origins of this situation. One of 

the most accepted explanations poses that the models that have supported deregulation 

rely on assumptions absent in real markets, such as perfect competition, risk neutrality 

and full rational behavior of market participants. Indeed, actual markets are likely to 

deviate from ideal conditions, exhibiting imperfections such as information asymmetry, 

risk-aversion, herding behavior and bounded rational expectations. Moreover, investors 

in power plants have the possibility to behave strategically in order to collect 

extraordinary profits, being prone to exercise market power or to be unresponsive to 

straight market signals. In that sense, integrating the logic behind the strategic decision-

making of new generating capacity has become vital when assessing the long-term 

market development. 

 

Arango and Larsen (2011) have proposed a comprehensive literature compilation that 

suggests the appearance of cycles in the construction of investor-owned power plants. 

Such work presents empirical evidence gathered from over 20 years of reforms in power 

markets, with the exemplary cases of England and Wales, and Chile. The article 

explains that the unstable market behavior leads to periods with low reserve margins, 

                                                 

1
 This term refers to the fluctuating development that the capacity is perceived to have exhibited after 

being deregulated, due to the sequential episodes of over and under-investment 
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mainly affecting the demand side in terms of high prices and recurrent shortages. 

However, in times of excess of capacity, generation firms are likely to endure 

substantial economic losses, and potential bankruptcy. Therefore, the cyclical 

investment pattern is deemed to pose major concerns for policymakers when assessing 

the long-run development of the market, since it ultimately has a negative impact on the 

security of supply (Roques, 2008). 

 

Two factors can be isolated in order to gain insights about the occurrence of 

construction cycles in the deregulated electricity industry. First, the decision to expand 

the system has been decentralized to depend on multiple self-oriented, autonomous 

companies, who attempt to maximize their individual financial profits while managing 

risks. This defines a market behavior that is dynamic in nature, since it is determined by 

the actions of individual participants (de Vries and Heijnen, 2008). The second and 

most important factor indicates that the generation activity has become exposed to 

several risks, unforeseen in the former regulated industry. Such risks result from the 

internalization of numerous uncertainties that drive the development of the actual 

industry in the long run (IEA, 2003; Arango and Larsen, 2011). 

 

Intrinsic characteristics of generation investments, such as capital-intensive, one-stage 

outlays, long amortization periods and irreversibility, magnify the effects of these 

factors (Olsina et al., 2006). Given the characteristics of the competitive generation 

business, investors tend to be risk-averse when making decisions (Vázquez et al., 2002). 

Generally, this rationale suggests that new generating units would be ordered only when 

large revenues are expected, and conversely decisions would be delayed if the estimated 

future rents are insufficient or uncertain. Hence, opportunities for investing in the 

generation sector are no longer of the now-or-never type since there is the possibility of 

waiting for future market conditions to be, at least partially, clarified. This opportunity 

incorporates one major attribute to the deregulated generation investments, termed the 

postponement option (Olsina et al., 2006). This term explains the investors’ willingness 

to consider the flexibility of deferring new generation projects when facing uncertainty 

driving the evolution of key market variables (Blanco and Olsina, 2011). It is worth to 

mention that there is also risk inherent to exercising the postponement option: if rival 

firms decide to invest before, they would take advantage of the upcoming favorable 

market conditions. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Despite the abundance of empirical evidence, the literature still lacks a mathematical 

framework for describing, in theoretical terms, the cyclical behavior of power markets 

based on the investors’ propensity to defer projects when facing uncertainty. However, 

it is worth to acknowledge that significant modeling efforts have been done for 

assessing the long-run behavior of the power industry (Ventosa et al., 2005). Several 

works have focused on including some behavioral aspects of investors in long-term 

power market models. Notwithstanding, the methods proposed are based on simplifying 

the risk-averse profile that defines the investors’ response, by adjusting their 

expectations upon profitability according to predefined patterns. Thus, it is deemed that 

the literature can be enhanced by including the behavioral nature driving the adequacy 

of capacity in current power markets. 

 

Given the several causes alleged to originate construction cycles in the deregulated 

power industry (e.g. information asymmetry, risk-aversion, herding behavior, bounded 

rational expectations and strategic behavior), this paper focuses on investigating the 

relationship between such cycles and the postponement of investment decisions under 

uncertainty. For this purpose, a novel framework for valuing generation projects under 

uncertainty is integrated with a long-term electricity market model. The formulation of a 

competitive generation system is based on Olsina et al. (2006), since it is recognized for 

describing the dynamics of capacity adequacy by following System Dynamics (SD) 

simulation approach. However, this research is different as it centers on modeling the 

microeconomics of investors’ decision-making based upon profitability expectations 

under uncertainty. In that sense, here it is considered that the construction of new power 

plants is a function of the strategic flexibility given by the postponement option under 

uncertainty. Therefore, Real Options Analysis (ROA) is applied to derive an optimal 

investment policy by weighing the value of exercising investments immediately and 

waiting for more favorable conditions. 

 

The remainder of this work is organized as follows. Section 2 introduces the 

methodological framework of the proposed investment valuation method. In Section 3, 

main outlines on the long-term dynamic market model, the description of uncertainties, 

the formation of expectations upon profitability, and the decision-making process are 

provided. Simulation results, as well as the validation process of the proposed model, 
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are presented in Section 4. Finally, Section 5 offers concluding remarks and prospects 

for further research. 

 

 

2 Methodological framework 

 

2.1 State-of-the-art review 

 

In the context of the present study, the model of a liberalized electricity market is used 

for gaining insights about the long-term evolution of its structural parameters, namely 

the installed capacity. Since the addition of new power plants now involves multiple, 

self-oriented firms, it is essential that the model integrate the logic behind their 

autonomous decision-making.  Several modeling approaches are suitable for describing 

the long-run behavior of the deregulated industry, from a financial point of view 

(Sterman, 1991). In particular, it has been found that simulation models are suitable for 

capturing actual behavioral features of investors in power markets, such as bounded 

rationality, learning abilities, imperfect foresight, etc. (Ventosa et al., 2005). In that 

context, System Dynamics (SD) is a modeling approach with a vast literature body 

about the development of simulation models of complex systems (Baum et al., 2015). 

SD has been used widely during the last decade for addressing the description of the 

long-term development of electricity markets, though is regaining interest in recent 

years (Leopold, 2015; Ahmad et al., 2016; Rios et al., 2016). The SD approach focuses 

on identifying the feedback structure of a complex system, at a macroscopic level, and 

the logical interrelationships among its components. Then, it aims to deliver a dynamic 

response in the long term by solving the governing non-linear differential equations. A 

well-founded background on this modeling approach can be found in Sterman (2000). 

 

Generally, dynamic models are well-known for suggesting a volatile long-term behavior 

of the deregulated power sector. The situation is explained due to the inherently 

unstable interaction between the power exchange and the profitability expectation of 

investors. In order to gain insights about this complex interaction, SD provides a tool 
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known as the Causal Loop Diagram (CLD
2
), which helps in giving a perspective about 

the feedback structure of the system under analysis. Such perspective eventually allows 

formulating the differential equations that rigorously describe the long-term system 

dynamics. The literature contains an example of the feedback structure that formalizes 

the process of capacity expansion in this study context through a CLD (Olsina et al., 

2006). Unlike in the centralized paradigm, here a delay representing the investors’ 

decision-making under uncertainties is one of the hypothesized factors preventing the 

timely adequacy of the installed capacity. This delay denotes the decision time 

necessary for investors to develop enough certainty about the recovery of capital costs. 

Since investments in power plants are no longer of the now-or-never type, investors are 

then likely to wait for the arrival of new and better information (though never complete) 

before undertaking new investment projects. 

 

With the advent of deregulation of the power industry, the decision-making of new 

generation investments has come to depend upon profitability expectations. In that 

context, the prevailing market design has been the energy-only market (e.g., Bunn and 

Larsen, 1992; Bunn and Larsen, 1994; Kadoya et al., 2005; Eager et al., 2010; Pereira 

and Saraiva, 2011; Osorio and van Ackere, 2016; Movahednasab et al., 2017). In 

addition, many works have discussed alternatives for remunerating the generating 

capacity after acknowledging the existence of imperfections and market flaws perceived 

in real markets (e.g., Vázquez et al., 2002; Neuhoff and de Vries, 2004; Batlle and 

Rodilla, 2010; Olsina et al., 2014). Most of the revised SD models have assessed the 

implementation of mechanisms such as the so-called capacity payments and capacity 

markets (e.g., Ford, 1999; Assili et al., 2008; de Vries and Heijnen, 2008; Hasani and 

Hosseini, 2011; Pereira and Saraiva, 2013; Hary et al., 2016; Ibanez-Lopez et al., 2017). 

 

According to the literature, an additional capacity remuneration mechanism can be 

either fixed or dynamic. In addition, it can be classified as a price or quantity-based 

mechanism (Olsina et al., 2014). An example of price-based dynamic remuneration is 

the mechanism introduced in England and Wales between 1990 and 2001. Under this 

                                                 

2
 The CLD is a tool from SD modeling, useful to depict the feedback structure of systems. A CLD 

consists of variables connected by arrows denoting causal influence among variables. Each causal link is 

assigned a polarity (either positive (+) or negative (–)), indicating how the dependent variable changes 

when so does the independent variable. 
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scheme, generators received a marginal clearing price in addition to a price uplift given 

by the probability of capacity shortfall, equal to the Loss of Load Probability (LOLP), 

times the power scarcity price, given by the Value of Lost Load (VOLL). A quantity-

based method for rewarding generating capacity involves a capacity market juxtaposed 

to the conventional energy-only market. Here, an obligation of capacity is computed in 

advance, and it equals a peak demand forecast plus a target reserve margin. Generators 

make bids of existing and new capacity seeking to fulfill the obligation. Then, the 

clearing price set in the capacity market is used to derive an additional remuneration for 

investors. This design is now operative in France and in Great-Britain (RTE, 2014; 

DECC, 2014). 

 

Despite the general agreement on the market dynamics, the prevailing modeling design 

still assumes a risk-neutral profile for investors. Therefore, so far only a few long-term 

models have characterized the risk-aversion of investors when deciding the addition of 

new capacity. Some examples incorporate an Internal Rate of Return (IRR) delayed by a 

fixed investment time, which denotes the time necessary for developing enough 

certainty about the project feasibility (e.g., Olsina et al., 2006; Olsina and Garcés, 

2008). In the paper by Sánchez et al. (2008), the viability of new power plants is based 

on a minimum rate of return, which denotes the cost of debt incurred by the generating 

company obtained by applying concepts of credit-risk theory. Other works focus on 

adjusting the investor’s previous risk-neutral expectations. For instance, Eager et al. 

(2012) include the Value at Risk (VaR) in the definition of project profitability. 

Moreover, Abani et al. (2016) expand the previous concept by including the Conditional 

Value at Risk (CVaR) for correcting the Net Present Value (NPV) of new power plants. 

Finally, Petitet (2016) and Petitet et al. (2017) propose a concave utility function for 

representing the value of the project under a risk-aversion assumption. 

 

2.2 Contribution of this work 

 

Few works have focused on representing the risk-averse profile of investors in long-

term electricity market models. The revised methods have mainly based on adjusting the 

profitability expectations with the objective of accounting for the risk-averse response 

of investors. Despite these efforts, it is deemed that the literature can be expanded in 

order to describe further behavioral features governing the capacity adequacy in actual 
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power markets. In fact, theoretical and empirical evidence suggests that investors are 

likely to defer new projects under uncertainty about future cash flows (Dixit and 

Pindyck, 2012; Arango and Larsen, 2011). This implies that the value of strategic 

flexibility for seizing opportunities and cutting losses contingent upon market evolution 

is, at least intuitively, accounted for (Blanco and Olsina, 2011). In that sense, the 

quantification of strategic flexibility involves a risk management technique, suitable for 

coping with major market uncertainties in order to achieve a timely investment 

execution. 

 

The quantification of investment strategic flexibility is strongly associated to the 

concept of Real Options Analysis (ROA). ROA provides a well-founded background for 

valuing flexible investments under uncertainty, based on the theory of Financial 

Options. Unlike the traditional NPV approach to project appraisal, ROA allows valuing 

opportunities to collect extraordinary profits, inherent to these high-risk projects. For 

this purpose, the key issue is to use the available options in order to define a lower limit 

to potential losses while the opportunity of extraordinary profits remains open. In that 

sense, ROA allows strategically managing a portfolio that includes the underlying 

project together with all available options. Thus, the availability of these options will 

usually influence the actual decision-making process, and consequently, must be fairly 

quantified (Olafsson, 2003). For instance, real options include the chance to postpone, 

abandon, expand, reduce, switch business, or temporary close and then reopen an 

investment project (Copeland and Antikarov, 2003). 

 

In that context, the main contribution of this paper is the integration of a long-run power 

market model with a decision-making framework of generation investments that 

accounts for the value of strategic flexibility to manage uncertainty. Without losing 

generality, the work is delimited to compute the value inherent to the option to postpone 

new power plant projects. Such option refers to an owner’s right to defer the project 

execution while waiting for upcoming (though never complete) information about the 

market evolution. Value of options embedded in investments in real assets can be 

computed by means of stochastic dynamic programming (Trigeorgis, 1996). Thus, the 

proposed approach defines the addition of new units through an investment function that 

dynamically computes the profitability of exercising new projects immediately and of 

waiting for more favorable conditions under expectations of uncertain market evolution. 
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This contribution aims to describe the dynamics of power investments and capacity 

adequacy in a more realistic fashion, and therefore shed light on the underlying reasons 

that drive the long-term market development. 

 

 

3 Modeling decision-making in long-term electricity market models 

 

3.1 Model overview 

 

Real Option Analysis (ROA) is introduced in the long-term market model for describing 

the decision-making process of investors when considering the addition of new power 

capacity. Uncertain future electricity prices are endogenous results from the proposed 

System Dynamics (SD) model, upon which option-based valuations for deciding 

capacity investments are computed at each time step. Investment decisions in new 

generating units in turn determine the paths of future power prices in the marketplace. It 

is worth to note that, in addition to endogenous decisions, the electricity market is 

driven in the long-term by exogenous random variables, such as demand growth, fuel 

prices, interest rates, etc. Here, only two external source of uncertainty are considered, 

i.e. fuel prices and demand growth. Appropriate stochastic processes may describe the 

random fluctuations of these external variables, which perturb the dynamics of power 

market and introduce uncertainty on the future development of electricity prices. In that 

sense, the modeling of stochastic variables is detailed in Section 3.3. 

 

Fig. 1 shows a Causal-loop Diagram (CLD) explaining the feedback structure that 

drives the long-term development of electricity markets under the decision-making 

framework proposed in this paper. Regarding the logic of power prices, investors are 

able to assess an instant price signal, based on the state of installed capacity and 

observations of power demand and fuel costs (loop B1). At the same time, they form 

expectations upon future prices based on the uncertainty driving the evolution of the 

same parameters (loop B2). ROA is integrated to the dynamic market model through a 

technique based on stochastic dynamic programming. This method allows deriving the 

Exercise Value (EV) and the Continuation Value (CV) that are used for guiding the 

decision-making of new power plants. First, the CV gives the expected present value of 

new projects if the decision is to postpone them. In that sense, the CV is related to the 
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stochastic sample of price signals that accounts for investors’ expectations upon 

uncertain market conditions at some future time. Such time is so-called the Option 

Maturity, and represents the moment when the project, if deferred, must be decided (or 

not) in the future. Second, the EV denotes the present value of undertaking new projects 

immediately. The EV is then associated to the price signal observed by investors 

according to current market conditions. Then, the decision to invest in new power plants 

is defined by a Profitability Index (PI), which results from the ratio between the EV and 

the CV. This index determines the amount of capacity that is added into the system at 

each simulation step. 

 

Fig. 1 

 

A Stock-and-Flow Structure (SFS
3
) involving the power capacity is embedded into the 

CLD introduced by Figure 1. Such structure allows denoting explicitly the variables that 

control rates of flows into stocks. By means of a SFS, the attributes of the capacity from 

several available technologies can be disaggregated in terms of lifetimes, construction 

lead-times, etc. In order to apply the proposed investment valuation framework, this 

paper therefore adopts a SD modeling approach based on a SFS for representing the 

various system components. This model is inspired by Olsina et al. (2006), since it is 

recognized for providing a broad mathematical formulation of the long-run dynamics of 

liberalized electricity markets. The literature already contains examples that followed 

such work (e.g., Assili, et al., 2008; Olsina and Garcés, 2008; Hasani and Hosseini, 

2011). In the following, main outlines of the referred market model are presented. 

 

3.2 Modeling long-term market dynamics 

 

The long-term evolution of electricity markets is mainly driven by movements of the 

Aggregate Supply Curve (ASC)
4
. Thus, a test power system organized under an energy-

only market design is considered. Additional remuneration mechanisms are noteworthy 

                                                 

3
 The SFS is a tool from SD modeling, useful to characterize the state variables of the system and to 

generate information upon which decisions and actions are based. A Stock creates delays by 

accumulating the difference between the inflow and the outflow from a process. 
4
 The Aggregate Supply Curve results from accumulating the available system capacity according to an 

economic dispatch merit order, that is, a ranking of available generating units according to their 

marginal production cost, from lowest to highest. 
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in the current debate on market design of power systems. However, such discussion is 

out of the scope of this work. 

 

For the sake of simplicity, the stylized test system considers only a thermal generation 

system with three conventional technologies: base (coal-fired plants – HC), middle (gas-

fired combined cycles – CC), and peak (gas turbines – GT). The initial system capacity 

sums 16.46 GW, from which 72.31% belongs to HC, 14.43% to CC, and 12.26% to GT. 

These percentages denote the optimal technology mix, given the initial conditions of 

load curve and annual durations that involve the dispatch of generation units from each 

technology in order to serve load at minimum cost. In that sense, the duration at which 

the cost of using two technologies turns equal is obtained from the screening curve
5
 of 

the technologies under study. In this model, the average fixed costs for each technology 

is derived by transforming the investment costs into a payment stream constant over an 

amortization time. Likewise, variable costs depend on the marginal generation costs for 

each technology, which result from the product
6
 between the average fuel consumption 

to produce an energy unit and the fuel price. Typical values assumed for these 

parameters are provided in Section 4. In addition, the microeconomic foundations that 

support the calculations can be found in Olsina et al. (2006). 

 

The initial capacity includes a reserve margin of 9.75%, which is defined as 

economically optimal for this test system and thus is based on an optimal level of 

supply reliability. This level occurs when the cost of serving an additional MW of 

demand equals the cost of installing and operating an additional MW of peak capacity. 

From this premise, given the Value of Lost Load (VOLL) and the fixed and variable 

costs of a MW of peak capacity, the economically optimal duration of load curtailment 

is also obtained from the screening curve of technologies (Stoft, 2002). Then, by 

knowing the optimal load shedding duration, the optimal reserve margin is readily 

derived thanks to a probabilistic reliability model that relates various reserve margins 

with their expected deficit durations. For each margin, the expected duration of load 

curtailment is mainly computed from the convolution of the probability of outage of 

                                                 

5
 Screening curves plot the total cost (fixed plus variable) of using a capacity unit of each technology as a 

function of the capacity factor. 
6
 The product is valid if the generators’ heat input functions can be linearized at maximum capacity 

through the origin. 
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generating units and the duration defined by the intersection of the available system 

capacity with the load curve. For simplicity, this involves developing a two-state 

probabilistic generation model that supposes identical units to allow the calculation of 

the outage probability table through the binomial distribution. Therefore, an average 

size and forced outage rate are assumed for all generating units. In this case, parameters 

are also provided in extent in the Section 4. Moreover, the mathematical background 

adopted for this simple probabilistic reliability model can also be found in Olsina et al. 

(2006). 

 

The present market model implements a power capacity aging chain with the objective 

of reproducing the development of the age structure of the test system. Thus, the 

evolution of the supply curve is determined endogenously as new capacity with higher 

thermal efficiency is added and old, inefficient capacity is decommissioned. The 

generating system is differentiated for each technology in five vintages, 𝑛𝑣, which 

differentiate the capacity productivity in terms of the thermal efficiency of generating 

units. An estimation of efficiency progression for the generating technologies under 

study is presented both in Fig. 2 (graphically) and in the Appendix (analytically). The 

capacity is assumed to remain in the system until the end of its lifetime, which is 

supposed constant for the simulation period. Therefore, a unit of capacity will reside in 

each vintage a number of years equal to a fifth of its lifetime. Typical values of 40, 30 

and 20 years are adopted for the lifetime of HC, CC and GT capacity, respectively. A 

different lifetime for each technology is likely as the usage and the number of starts 

vary significantly among base, middle and peak units. 

 

Fig. 2 

 

The stock of capacity of technology 𝑖 at any time 𝑡 is described through an 

accumulation resulting from the rate at which new capacity enters the first vintage, and 

the rate at which old capacity abandons the last vintage. Formally, this accumulation is 

represented by: 

 

 𝐾𝑖(𝑡) = ∫ (�̇�𝑖1
𝑖𝑛(𝜏) − �̇�𝑖5

𝑜𝑢𝑡(𝜏)) 𝑑𝜏
𝑡

0
+ 𝐾𝑖(0) (1) 
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Here, 𝐾𝑖(0) is the initial capacity of technology 𝑖, �̇�𝑖1
𝑖𝑛(𝑡), represents the rate at which 

units are being brought online; and �̇�𝑖5
𝑜𝑢𝑡(𝑡) = �̇�𝑖1

𝑖𝑛(𝑡 − 𝑇𝑖) is the decommissioning rate, 

which equal the addition rate at time 𝑡 − 𝑇𝑖, with 𝑇𝑖 being the average lifetime of 

technology 𝑖. If Eq. (1) is differentiated by time, the net change in capacity for 

technology 𝑖 at any time is expressed by: 

 

 𝐾𝑖
̇ (𝑡) = �̇�𝑖1

𝑖𝑛(𝑡) − �̇�𝑖5
𝑜𝑢𝑡(𝑡) (2) 

 

Likewise, the capacity under construction for technology 𝑖 is derived instantly as an 

accumulation of the rate at which new power plants are being decided minus the rate at 

which generating units are being completed: 

 

 𝐾𝑖
𝑈𝐶(𝑡) = ∫ (𝐼�̇�(𝜏) − �̇�𝑖1

𝑖𝑛(𝜏)) 𝑑𝜏
𝑡

0
+ 𝐾𝑖

𝑈𝐶(0) (3) 

 

In Eq. (3), 𝐾𝑖
𝑈𝐶(0) is the initial capacity under construction for technology 𝑖; 𝐼�̇�(𝑡) 

denotes the investment rate; and �̇�𝑖1
𝑖𝑛(𝜏) represents the completion rate. It is deemed that 

�̇�𝑖1
𝑖𝑛(𝑡) depends on the investment rate that prevailed at time 𝑡 − �̅�𝑖

𝐶, 𝐼�̇�(𝑡 − �̅�𝑖
𝐶), with 

�̅�𝑖
𝐶 defining the mean construction time for technology 𝑖. The construction time differs 

considerably among generating technologies. In this case, illustrative values equal to 36, 

18 and 9 months are assumed for the mean construction time of HC, CC, and GT power 

plants, respectively. The investment rate at time 𝑡 − �̅�𝑖
𝐶, 𝐼�̇�(𝑡 − �̅�𝑖

𝐶), is computed by: 

 

 �̇�𝑖1
𝑖𝑛(𝑡) = 𝐼�̇�(𝑡 − �̅�𝑖

𝐶) = 𝑖𝑚𝑖 (𝑃𝐼𝑖(𝑡 − �̅�𝑖
𝐶)) ∙ 𝐼�̇�

𝑟𝑒𝑓
(𝑡 − �̅�𝑖

𝐶) (4) 

 

Here, 𝐼�̇�
𝑟𝑒𝑓

(𝑡 − �̅�𝑖
𝐶) is the reference investment rate in technology 𝑖 for holding the 

system in the long-run equilibrium, which means, investments made under zero profit 

expectations. It is expressed as the capacity decommissioning rate, �̇�𝑖5
𝑜𝑢𝑡(𝑡 − �̅�𝑖

𝐶), plus 

the addition rate necessary to cover the expected growth of maximum load served by 

such technology under an optimal generation mix, �̇�𝑖(𝑡 − �̅�𝑖
𝐶): 

 

 𝐼�̇�
𝑟𝑒𝑓

(𝑡 − �̅�𝑖
𝐶) = �̇�𝑖5

𝑜𝑢𝑡(𝑡 − �̅�𝑖
𝐶) + �̇�𝑖(𝑡 − �̅�𝑖

𝐶) (5) 
 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

The mathematical framework for computing the addition rate necessary to cover the 

expected growth of peak load served by each technology under an optimal generation 

mix can be seen in Olsina et al. (2006). Next, the investment multiplier for technology 

𝑖, 𝑖𝑚𝑖 (𝑃𝐼𝑖(𝑡 − �̅�𝑖
𝐶)), depends upon profitability expectations formed at time 𝑡 − �̅�𝑖

𝐶. 

These profitability expectations are synthesized by means of a profitability index, 

𝑃𝐼𝑖(𝑡 − �̅�𝑖
𝐶), which is described properly in Section 3.5. As long as the PI increases, 

more projects based on such technology become profitable, even for projects riskier 

than average or for companies facing higher firm–specific risks. The amount of 

information regarding investment plans from competitors and the number of participants 

following the actions of the leading firms, i.e. herding behavior, is critical to the extent 

to which the investment rate increases with the perceived profitability. Nevertheless, 

participants are aware of the potential danger that might result from a wave of massive 

entries when the attractiveness for investing is high. It seems thus logical that the 

investment responsiveness shows a saturation level for a somewhat high profitability 

level. Logistic functions (Fig. 3) are adopted in order to capture the effect of such index 

on the multiplier of the investment rate for each technology, 𝑖𝑚𝑖(𝑡 − �̅�𝑖
𝐶). The 

functions are obtained from the following expression: 

 

Fig. 3 

 

 𝑖𝑚𝑖(𝑡 − �̅�𝑖
𝐶) =

𝑖𝑚𝑖
𝑚𝑎𝑥

1+𝑒
−(𝛼𝑖∙𝑃𝐼𝑖(𝑡−�̅�𝑖

𝐶)+𝛽𝑖)
 (6) 

 

In Eq. (6), for each technology 𝑖, 𝑖𝑚𝑖
𝑚𝑎𝑥 is the saturation level, 𝛼𝑖 controls the slope, 

and 𝛽𝑖 determines the location of the function respect to the x-axis. In each case, the 

tipping point is given when the PI equals one, and thus the investment rate adopts its 

reference value. The parameters for each technology are included in the Section 4. 

Following the work by Olsina et al. (2006), a different saturation level is assigned. The 

saturation level for HC power plants is set relatively low, as it is unlikely to expect an 

over-reaction of investors in this technology. On the opposite, the saturation level for 

CC units is set relatively high, since a high degree of responsiveness to the profitability 

level has been observed for this technology in actual markets. Investments in GT share 

many features with CC projects but, as the own entry might undermine the potential 

profit and the fact that peak units only profit from very rare events, its investment 
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saturation level might be significantly lower than for CC, however, probably higher than 

the HC-level. 

 

The average efficiency of the generation system evolves according to the development 

of capacity in each vintage and the technological progress in thermal efficiencies of new 

capacity entering the market. Thus, the average efficiency for vintage 𝑗 of technology 𝑖 

at any time 𝑡, �̅�𝑖𝑗(𝑡), results from the ratio between the accumulation of change in fuel 

consumption and the existing capacity. This is expressed by: 

 

 
1

�̅�𝑖𝑗(𝑡)
=

1

𝐾𝑖𝑗(𝑡)
∫ (

�̇�𝑖𝑗
𝑖𝑛(𝑡)

𝜂𝑖𝑗
𝑖𝑛(𝑡)

−
�̇�𝑖𝑗

𝑜𝑢𝑡(𝑡)

𝜂𝑖𝑗
𝑜𝑢𝑡(𝑡)

)
𝑡

0
𝑑𝑡 +

1

�̅�𝑖𝑗(0)
 (7) 

 

where �̇�𝑖𝑗
𝑖𝑛(𝑡) and 𝜂𝑖𝑗

𝑖𝑛(𝑡), and �̇�𝑖𝑗
𝑜𝑢𝑡(𝑡) and 𝜂𝑖𝑗

𝑜𝑢𝑡(𝑡), represent, respectively, the rates 

and the efficiencies of the capacity entering and abandoning the vintage 𝑗 of technology 

𝑖 at time 𝑡; while 𝐾𝑖𝑗(𝑡) represents the residing capacity; and �̅�𝑖𝑗(0), accounts for the 

average initial thermal efficiency. In this case, the average initial efficiency for each 

vintage is determined from the curves presented in Fig. 2, jointly with the age structure 

of the generation system at the beginning of simulations. In addition, these curves are 

used to define the efficiency of the capacity being added to as well as being retired from 

the system over the entire simulation period. 

 

Finally, the average marginal cost of generation for the capacity of vintage 𝑗 from 

technology 𝑖 at any time 𝑡, 𝑀𝐶̅̅̅̅
�̅�𝑗(𝑡), is derived by: 

 

 𝑀𝐶̅̅̅̅
�̅�𝑗(𝑡) =

𝐹𝑃𝑖(𝑡)

�̅�𝑖𝑗(𝑡)
  (8) 

 

In Eq. (8), 𝐹𝑃𝑖(𝑡) denotes the fuel price, and �̅�𝑖𝑗(𝑡), the average thermal efficiency for 

vintage 𝑗 of technology 𝑖 at time 𝑡.  

 

It is worth to recognize the importance of further emission-free generating technologies 

in electricity markets worldwide, among which nuclear and hydropower generation are 

exemplary. Moreover, the mainstream academic discussion now involves the transition 

towards the large integration of non-conventional renewable technologies, such as wind, 
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solar, etc. In those cases, an additional uncertainty source arises in terms of the 

availability of the primary energy resource (e.g. water inflows). However, it is also 

argued that fossil fuels would prevail as the world’s primary energy source, even in the 

long run. In fact, as exposed by Covert et al. (2016), the International Energy Agency 

(IEA) estimates that fossil fuels would still supply 79% of the global energy in 2040, if 

strong policies regarding carbon emissions are not applied (IEA, 2015). In that context, 

the scope of this article is delimited to shed light on factors driving the market 

according to the prevailing energy mix. 

 

3.3 Modeling stochastic exogenous market variables 

 

This paper assumes that the market is driven exogenously by stochastic demand and 

fuel prices. Jointly with the state of installed capacity and fuel consumption, the 

computation of these variables is essential when modeling the profitability expectations 

of investors. Here, the prediction of short-term movements of electricity prices provides 

information to a small extent. In that sense, it is acceptable some loss of chronological 

information with the objective of gaining in model simplicity. For this reason, demand 

is characterized by a Load Duration Curve (LDC
7
), which adopts a linear shape in order 

to avoid unnecessarily complex calculations. Moreover, by neglecting plausible 

structural changes, it is supposed that the LDC holds its linear pattern over the entire 

simulation horizon. Therefore, at the start of simulations, the LDC is analytically 

expressed by: 

 

 𝐿(0) = (𝐿𝑚𝑖𝑛(0) − 𝐿𝑚𝑎𝑥(0)) ∙ 𝑑 + 𝐿𝑚𝑎𝑥(0) (9) 
 

where 𝐿(0) is the load level at 𝑡 = 0 exceeding a cumulated duration 𝑑, given an initial 

maximum and minimum demand, 𝐿𝑚𝑎𝑥(0) and 𝐿𝑚𝑖𝑛(0), respectively. In this case, the 

initial maximum and minimum load equal 15 GW and 10 GW, respectively. 

 

A deterministic exogenous growth rate of 1 %/year is chosen for simulating the demand 

observed by investors at any time. Thus, known the demand at the start of simulations, 

the load at time 𝑡 is given by: 

                                                 

7
 The LDC results from sorting the chronological demand of a certain period (in this case, equal to one 

year) from higher to lower. 
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 𝐿(𝑡) = (𝐿𝑚𝑖𝑛(0) ∙ 𝑒𝑔𝑚∙𝑡 − 𝐿𝑚𝑎𝑥(0) ∙ 𝑒𝑔𝑀∙𝑡) ∙ 𝑑 + 𝐿𝑚𝑎𝑥(0) ∙ 𝑒𝑔𝑀∙𝑡 (10) 
 

Here, 𝑔𝑚 and 𝑔𝑀 are growth rates of the minimum and maximum demand, respectively. 

For a linear LDC, it can be demonstrated that if 𝑔𝑀 = 𝑔𝑚 = 𝑔𝐿 the growth of the peak 

load is equal to the load of the annual energy consumption. In addition, it is worth to 

mention that exponential functions describe the growth of both variables because here 

the nature of simulations is of continuous time. 

 

By following the same premise, deterministic exogenous growth rates with typical 

values equal to 0.02 %/year are used for simulating the prices of hard-coal and natural 

gas that are observed by investors at any time (Frydenberg et al., 2014). In this case, the 

initial values for both variables are 6.50 €/MWh and 10.50 €/MWh, respectively. 

Therefore, known the fuel price at the start of simulations, the fuel price for each 

technology 𝑖 at any time 𝑡 is expressed by: 

 

 𝐹𝑃𝑖(𝑡) = 𝐹𝑃𝑖(0) ∙ 𝑒𝑔𝐹𝑃𝑖
∙𝑡 (11) 

 

In Eq. (11), 𝐹𝑃𝑖(0) denotes the fuel price for technology 𝑖 at the beginning, and 𝑔𝐹𝑃𝑖
 

represents its long-term growth rate. 

 

Rigorously, the growth of power demand and fuel prices is stochastic by nature. In fact, 

despite being able to observe the key market variables, investors might as well expect 

future random deviations of the growth rates around their long-term “normal” value. 

Such deviations might occur due to temporary changes of weather, together with the 

transitory acceleration and deceleration of the economic activity. 

 

There is a rich literature body documenting research on the stochastic behavior of 

commodity price movements, such as fuel prices affecting the long-term development 

of electricity markets. In that sense, yet there is not a broad consensus on the random 

process that best fits the observed fluctuations of different commodity prices. The 

selection depends on the commodity itself, the market where the commodity is traded, 

the length of the data set, the time resolution of price time series (hourly, daily, 
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monthly, etc.), etc. Modelers should be cautious and test this hypothesis for any 

particular market under consideration. 

 

Notwithstanding, the mean-reverting stochastic process is well-known as a plausible 

and realistic way to describe uncertain growth rates of commodities, including fuel 

prices. Indeed, mean-reverting stochastic processes have long been proposed for 

properly capturing the long-term stochastic dynamics of fuel prices (oil, gas and coal) 

(Pindyck, 1999). For instance, the article by Schwartz (1997) widely discusses on 

general economic grounds why mean reversion represents a reasonable and realistic 

stochastic model for commodity prices. In fact, oil prices are used in that work for 

statistically testing the mean-reversion hypothesis. 

 

Evidence of mean reversion in spot prices of electricity has also been reported 

(Pilipovic, 1998; Lucia and Schwartz, 2002; Weber, 2005). In fact, according to 

Pilipovic (1998), risk management in energy markets requires mean-reverting models as 

they do the best job in capturing the distribution of energy prices. Currently, mean-

reverting specifications are a standard approach used by practitioners for modeling 

uncertainty upon future and spot prices of energy commodities (Ronn, 2002; 

Skorodumov, 2008). Moreover, fuel prices following stochastic processes with mean-

reversion features, such as the simplest Ornstein-Uhlenbeck (OU) process, are often 

prescribed in the context of Real Option valuation of power plant investments (Abadie 

and Chamorro, 2008; Bannör et al., 2016).  

 

Regarding power price models, simple mean-reversion models have also been proposed 

for capturing stochastic short-term deviations of electricity demand (Barlow, 2002; 

Kanamura and Ohashi, 2008). In the long-term, growth rates of electricity demand 

exhibit significant uncertainty and themselves are best depicted as a random variable. In 

that context, consumption growth is related to population growth and the expansion rate 

of the Gross Domestic Product (GDP). Evidence of mean reversion is also found with 

respect to the evolution of the GDP
8
 (Mayoral, 2006). This means that economic growth 

presents unpredictable deviations from the long-term structural mean rate, i.e. a 

“normal” or equilibrium long-term level. These stochastic movements are explained by 

                                                 

8
 Evidence of mean-reversion is found regarding other economic variables as well, including stock prices 

(Poterba and Summers, 1988) and interest rates (Wu and Chen, 2001) 
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the arrival of shocks and the occurrence of short-lived endogenous changes in the 

economy. In fact, recurrence of economic downturns, recessions, recovery and 

expansions are cyclical patterns displayed by most economies. The probability of a 

reversion to the normal growth rate is higher if deviations of GDP from the mean are 

large. 

 

As aforementioned, the stochastic changes in economic output are conveyed to 

electricity consumption. Empirically, it has been observed that the growth rate of 

electricity consumption typically declines earlier than a recession is confirmed and 

usually resume before economic recovery can be measured. The dependence of changes 

in electricity consumption upon fluctuations of the economic output is supported by 

significant evidence from countries worldwide (Ghosh, 2002; Jumbe, 2004; Yoo, 2005; 

Apergis and Payne, 2009; Ouédraogo, 2010; Ciarreta and Zarraga, 2010; Shahbaz et al., 

2011; Gurgul and Lach, 2012; Omri, 2013; Wolde-Rufael, 2014). 

 

In that sense, Olsina (2005) have estimated parameters of OU processes with actual data 

on power consumption growth rates of three different power systems (Argentina, Spain 

and Germany). Simulated paths with the adjusted OU models replicate well the 

stochastic changes in consumption growth rates observed in historical datasets. Based 

on that empirical research, OU processes have been used to describe stochastic demand 

growth rates in further works embodying the state-of-the-art on the assessment of the 

long-run investment dynamics of liberalized power markets (Pereira and Saraiva, 2011; 

Hasani and Hosseini, 2011; Pereira and Saraiva, 2013). 

 

Hence, it is assumed that this stochastic model is realistic enough in order to 

demonstrate the practicability of integrating ROA in the long-term power market, given 

uncertainty in fuel prices and electricity demand. The mean-reverting process thus 

involves an uncertain variable that evolves fluctuating around a known mean. 

Mathematically, the common mean-reverting process, known as the arithmetic 

Ornstein-Uhlenbeck stochastic process, is given by (Gillespie, 1996): 

 

 𝑑𝑔 = 𝜂 ∙ (�̅� − 𝑔) ∙ 𝑑𝑡 + 𝜎 ∙ 𝑑𝑧 (12) 
 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Here, the expected change in a growth rate, 𝑑𝑔, after a time increment, 𝑑𝑡, depends 

upon the deviation of a growth rate, 𝑔, from its long-term value, �̅�, and a speed of the 

reversion towards the mean, 𝜂. In addition, it depends upon a volatility parameter, 𝜎, 

and a variable following a Wiener process, also known as Brownian Motion, 𝑑𝑧. It can 

be shown that an infinitesimal increment of the Wiener process, 𝑑𝑧, can be denoted in 

continuous time by: 

 

 𝑑𝑧 = 𝜀 ∙ √𝑑𝑡 (13) 
 

where 𝜀 denotes one realization for a normally distributed random variable with mean 

zero and standard deviation of one, i.e. 𝜀 = 𝑁(0,1). In order to represent the uncertainty 

driving the market evolution in a more realistic way, it is reasonable to assume a 

correlation between, in one hand, the growth rates of power demand and capacity, and, 

on the other hand, the growth rates of prices for hard-coal and natural gas. In that sense, 

the set of 𝑁 random variables 𝜀𝑛; 𝑛 = 1,2, … , 𝑁 is replaced by the set of 𝑁 correlated 

variables 𝜃𝑛; 𝑛 = 1,2, … , 𝑁. For computing the values of 𝜃𝑛, the Cholesky 

decomposition is applied to the correlation matrix, 𝐵 (Huang, 2009; Pringles et al., 

2015). This is expressed by: 

 

 chol[𝐵] = chol [
𝛽11 ⋯ 𝛽1𝑁

⋮ ⋱ ⋮
𝛽𝑁1 ⋯ 𝛽𝑁𝑁

] = 𝐴𝐴𝑇 (14) 

 

Here, 𝐵 is composed by the correlation coefficients between the 𝑁 variables under 

study, 𝛽𝑖𝑗; 𝑖, 𝑗 = 1,2, … , 𝑁. In that sense, this work assigns a correlation of 0.80 for the 

growth rates of power demand and capacity, as well as a correlation of 0.70 for the 

growth rates of prices for hard-coal and natural gas. In addition, it is worth to note that 

all elements from the diagonal of 𝐵 equal 1, i.e. there is full correlation between one 

variable and itself. In Eq. (14), 𝐴 is a lower triangular matrix with elements 𝛼𝑖𝑗; 𝑖, 𝑗 =

1,2, … , 𝑁, while 𝐴𝑇 is the transpose matrix of 𝐴. Then, the value of 𝜃𝑛; 𝑛 = 1,2, … , 𝑁 is 

computed as the linear combination of 𝐴, and the vector of independent variables 

𝜀𝑛; 𝑛 = 1,2, … , 𝑁, which size is 𝑁 × 1: 
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 [
𝜃1

⋮
𝜃𝑁

] = [

1 ⋯ 0
⋮ ⋱ ⋮

𝛼𝑖𝑗 ⋯ 1
] × [

𝜀1

⋮
𝜀𝑁

] (15) 

 

By writing Eq. (12) as a difference equation, Monte Carlo techniques can be applied for 

simulating multiple stochastic realizations of correlated growth rates under study. Then, 

a realization 𝑟 of expected demand and capacity, and fuel prices for both technologies, 

at some future time 𝑀 = 𝑡 + 𝑑𝑡 is obtained by: 

 

 𝐿𝑟(𝑀) = (𝐿𝑚𝑖𝑛(𝑡) ∙ 𝑒𝑔𝐿
𝑟∙𝑑𝑡 − 𝐿𝑚𝑎𝑥(𝑡) ∙ 𝑒𝑔𝐿

𝑟∙𝑑𝑡) ∙ 𝑑 + 𝐿𝑚𝑎𝑥(𝑡) ∙ 𝑒𝑔𝐿
𝑟∙𝑑𝑡 (16) 

 

 𝐾𝑇
𝑟(𝑀) = 𝐾𝑇(𝑡) ∙ 𝑒𝑔𝐾

𝑟 ∙𝑑𝑡 (17) 
 

 𝐹𝑃𝑖
𝑟(𝑀) = 𝐹𝑃𝑖(𝑡) ∙ 𝑒

𝑔𝐹𝑃𝑖
𝑟 ∙𝑑𝑡

 (18) 
 

where 𝐿𝑟(𝑀) is a realization of the load level at time 𝑀 exceeding a cumulated duration 

𝑑, given the peak and minimum demand observed at any time 𝑡, 𝐿𝑚𝑎𝑥(𝑡) and 𝐿𝑚𝑖𝑛(𝑡), 

respectively, and a stochastic growth rate, 𝑔𝐿
𝑟, expected at time 𝑀. In Eq. (17), 𝐾𝑇

𝑟(𝑀) 

denotes a possible evolution for the system installed capacity at time 𝑀, and it is based 

on a realization of the correlated growth rate, 𝑔𝐾
𝑟 . In that sense, 𝐾𝑇(𝑡) represents the 

total system capacity at any time 𝑡, which results from the dynamic model presented in 

the previous subsection. Similarly, 𝐹𝑃𝑖
𝑟(𝑀) is a realization of the fuel price for 

technology 𝑖 expected at time 𝑀, given the fuel price observed at any time 𝑡, 𝐹𝑃𝑖(𝑡), 

and a stochastic, correlated growth rate, 𝑔𝐹𝑃𝑖

𝑟 . An example of simulation of the observed 

peak demand at some time 𝑡 after the beginning of simulations, alongside with the 

multiple Monte Carlo realizations derived from it and expected at time 𝑀, is illustrated 

in Fig. 4. 

 

Fig. 4 

 

In this paper, the economical demand for power is considered price-irresponsive in the 

short-term. This assigns customers with an inability to adjust their consumption at short 

notice in response to sudden price changes. However, it is assumed that consumers will 

not decide to purchase any more power if the market price rises above the cost of being 

curtailed. This cost, represented by the VOLL, is generally administratively set by the 
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authorities in order to contemplate the case when the market cannot be cleared because 

the available power capacity is insufficient to satisfy the price-inelastic demand. In this 

case, the VOLL adopts an exemplary value of 1000 €/MWh. 

 

It is worth to recognize that electricity demand, if exposed to spot prices, might develop 

some degree of elasticity over a longer period by reallocating or reducing consumption. 

Moreover, the integration of novel technologies
9
 offers new possibilities for consumers 

to be much more responsive to prices. In that context, changes in load patterns might 

have major impact on the long-run evolution of power markets. However, long-term 

demand adjustments are not considered since the lack of empirical evidence on the 

extent that this occurs
10

. Thus, the investigation of price-driven long-run alteration in 

consumption patterns is beyond the scope of this work. 

 

Notwithstanding, it is important to highlight as well that here expectations upon demand 

growth, which are based on observations made continuously within the simulation 

period, follow a mean-reverting stochastic process. The adoption of this process allows 

denoting some degree of responsiveness, at least indirectly, of the demand growth. For 

instance, after a decrease in demand growth, which might be seen as a response to rising 

prices, the process’s component of reversion towards the mean will define an increase in 

the growth rate, which might result from decreasing prices. Thus, the underlying self-

balancing mechanism of the mean-reverting process might be as well interpreted as the 

permanent adjustment of demand growth in response to the long-term movements of 

power prices. 

 

3.4 Modeling expectations upon profitability 

 

A price duration model is used to derive the market signals for investment decision-

making in each technology. In this case, the information on the long-term distribution of 

power prices is assumed to be accurately represented by an annual Price Duration Curve 

(PDC). As shown in Fig. 5, each PDC is defined schematically based on the ASC and 

                                                 

9
 For instance, these technologies include, smart grids, distributed generation and energy storage. 

10
 A higher responsiveness of consumption to power prices would likely be a major source of complex 

dynamics in future electricity markets. Dynamic interaction of demand elasticity with capacity 

investments is a relevant issue deserving further investigation. 
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the LDC, both of which have been introduced in previous subsections. In that context, 

the PDC yields (in the x-axis) the yearly probability, 𝐷𝑖𝑗, for the capacity of vintage 𝑗 

from technology 𝑖 to operate with the market price over its own marginal cost of 

generation (in the y-axis). The set of probabilities for each vintage is then computed by: 

 

Fig. 5 

 

 𝐷𝑖𝑗 = {

1
𝑞∙𝐾𝑖𝑗

𝑐𝑢𝑚−𝐿𝑚𝑎𝑥

𝐿𝑚𝑖𝑛−𝐿𝑚𝑎𝑥

0

                    

𝑞 ∙ 𝐾𝑖𝑗
𝑐𝑢𝑚 < 𝐿𝑚𝑖𝑛

𝐿𝑚𝑖𝑛 ≤ 𝑞 ∙ 𝐾𝑖𝑗
𝑐𝑢𝑚 ≤ 𝐿𝑚𝑎𝑥

𝑞 ∙ 𝐾𝑖𝑗
𝑐𝑢𝑚 > 𝐿𝑚𝑎𝑥

 (19) 

 

where 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 are the peak and maximum demand, respectively, and 𝐾𝑖𝑗
𝑐𝑢𝑚 

denotes the aggregate system capacity up to vintage 𝑗 from technology 𝑖, according to 

the dispatch merit order. Additionally, 𝑞 represents a system-wide expected availability 

of generating units. This coefficient is derived at the initial time from the relation 

between the available capacity for the entire system, 𝐾𝑇
𝑎𝑣𝑎𝑙(0), and the maximum 

demand, 𝐿𝑚𝑎𝑥(0): 

 

 𝑞 =
𝐾𝑇

𝑎𝑣𝑎𝑙(0)

𝐿𝑚𝑎𝑥(0)
 (20) 

 

The available system capacity is attained as the intersection of the deficit duration, 

related to the probabilistic reliability model mentioned in Section 3.2, with the LDC at 

the start of simulations. This is expressed by: 

 

 𝐾𝑇
𝑎𝑣𝑎𝑙(0) = (𝐿𝑚𝑖𝑛(0) − 𝐿𝑚𝑎𝑥(0)) ∙ 𝐷𝑑𝑒𝑓(0) + 𝐿𝑚𝑎𝑥(0) (21) 

 

By neglecting non-fuel costs and operational constraints, it is assumed that power plants 

will be dispatched each time the prevailing price exceeds their generation marginal 

costs. In that sense, the operating profits that one MW of new capacity from technology 

𝑖 would make on the power market in one year, 𝜋𝑖 [€/MW·year], can be determined 

from the enclosed area between the 𝑃𝐷𝐶 and the marginal cost of such generation unit, 

𝑀𝐶̅̅̅̅
�̅� [€/MWh]: 
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 𝜋𝑖 = 8760 ∙ ∫ [𝑃𝐷𝐶 − 𝑀𝐶̅̅̅̅
�̅�] ∙ 𝑑𝐷

𝐷𝑖

0
 (22) 

 

In Eq. (22), 8760 represents the amount of hours in one year, while 𝐷𝑖 denotes the 

annual probability (adimensional) for one MW of new capacity from technology 𝑖 to 

operate with the market price over its own marginal costs. Next, by assuming that the 

operating profits from the first year will remain constant, the present value of the 

expected stream of operating profits that a new MW from technology 𝑖 would make 

over an amortization period �̅�𝑖
𝐴, 𝑂𝑃�̅�𝑖

𝐴 [€/MW], can be approximated as: 

 

 𝑂𝑃�̅�𝑖
𝐴 = 𝜋𝑖 ∙ (1 + 𝜌)−�̅�𝑖

𝐶
∙

1

𝜌
∙ [1 − (1 + 𝜌)−�̅�𝑖

𝐴
] (23) 

 

In Eq. (19), 𝜋𝑖 represents the annual unitary rents expected by technology 𝑖, and 𝜌 is the 

required revenue rate by which 𝑂𝑃�̅�𝑖
𝐴 must be discounted. In this case, constant values 

equal to 25, 20 and 15 year are considered for the amortization time of HC, CC and GT 

power plants, respectively. Likewise, a required discount rate of 12.5 %/year is adopted 

for each technology. Finally, it is deemed that investors account for a time lag in the 

construction of new power plants. Thus, the present value of expected profits is also 

discounted over an average construction time for each technology, �̅�𝑖
𝐶. 

 

The approximation defined by Eq. (23) can also be understood as an efficient energy 

forward contract auction. In real markets, these auctions offer long-term contracts based 

on current price levels, aiming at reducing financial risks for newcomers in the 

generation activity (Moreno et al., 2010). 

 

3.5 Modeling decision-making under uncertainties 

 

A novel modeling approach is proposed to determine the aggregate addition of capacity 

into the test generation system. The model intends to reproduce the decision-making of 

investors in each technology according to profitability expectations under uncertainty, 

and thus is elaborated upon the notion of ROA. This is the main contribution of this 

paper, since it focuses on integrating a ROA framework for valuing irreversible 

investments under uncertainty within a long-term electricity market model. Rigorously, 

an optimal investment policy for each technology can be derived at any time by 
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comparing the value of immediately undertaking new projects, i.e. the EV, with the 

value of projects if the decision is to postpone them in order to be reassessed in the 

future, i.e. the CV. In that sense, the EV is related to the price signal observed by 

investors at each simulation step, according to current market conditions. Conversely, 

the CV is associated to a stochastic sample of price signals that accounts for investors’ 

expectations upon uncertain market conditions at some period after each the simulation 

step. Such period, so-called the Option Maturity, represents the future moment when the 

project must be decided (or not) if it is deferred. 

 

In both cases, the price signals are given by PDC’s. As stated in the previous subsection, 

each PDC denotes a highly non-linear function that is defined schematically from an 

ASC and a LDC. Thus, the price signal related to the EV is derived from the ASC and 

the LDC that consider market conditions observed by investors at each simulation time. 

Likewise, the sample of price signals associated to the CV depends on stochastic 

samples of both the ASC and the LDC. The samples represent investors’ expectations 

upon the uncertain evolution of market conditions at the Option Maturity. In practice, 

this assumption seems plausible since investors are able to follow the behavior of 

variables defining the market price signal. At the same time, they might keep track of 

the movement of the price signal in recent years and form expectations upon a number 

of future market movements, based on the observed value and its perceived volatility. 

This defines the difference between the two sources of information that ultimately are 

used here to model both, the EV and the CV. 

 

In order to define the ASC and the LDC that are observed by investors first it is required 

to compute the maximum and minimum demand and the fuel price for each technology 

at each simulation step. For this purpose, variables are assumed to follow deterministic 

patterns according to exogenous long-term growth rates, as shown by Eq. (10) and Eq. 

(11), respectively. It is worth to note that the remaining parameters that determine the 

observed ASC, i.e. the capacity and the thermal efficiency from each vintage of each 

technology, are state variables and thus result from dynamic simulations. Likewise, for 

determining the stochastic samples of ASC and LDC that are expected by investors first 

it is necessary to obtain samples of maximum and minimum demand, capacity and fuel 

price for each technology at the Option Maturity. These variables are derived from the 

values observed at each simulation step, jointly with stochastic samples for the growth 
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rates expected at the Option Maturity, as shown by Eq. (16), Eq. (17) and Eq. (18). 

Then, the sample growth rates are obtained by applying multiple Monte-Carlo 

realizations of the arithmetic Ornstein-Uhlenbeck stochastic process that determines the 

uncertain evolution of the variables under consideration (Eq. (12)). 

 

It is important to mention that the major concern of applying different stochastic 

processes in the scope of ROA is mainly related with the utilization of the binomial 

lattice approach for option pricing. Under this approach, the uncertain underlying asset 

must be described according to a lognormal probability distribution. In order to 

overcome these limitations, this paper does not apply such method, but utilizes a ROA 

approach based of stochastic dynamic programming. Backward Dynamic Programming 

based on Expected present value (DPE) involves a suitable optimization technique for 

computing the EV and the CV for each technology at any time (Blanco et al., 2012). 

Unlike other dynamic programming tools (e.g. the binomial lattice method), the DPE 

performs particularly well when dealing with highly volatile profits, as in this case. In 

that context, the decision problem for technology 𝑖 at the Option Maturity 𝑀𝑖 = 𝑡 + 𝑑𝑡𝑖 

can be modeled as: 

 

 Exercise, if 𝔼 [𝑂𝑃�̅�𝑖
𝐴(𝑀𝑖)] > 𝐼𝐶𝑖(𝑀𝑖) (24) 

 

Do not exercise, if 𝔼 [𝑂𝑃�̅�𝑖
𝐴(𝑀𝑖)] ≤ 𝐼𝐶𝑖(𝑀𝑖) 

 

Thus, the value of the deferral option for technology 𝑖 at maturity time 𝑀𝑖, 𝑉𝑖
∗(𝑀𝑖) 

[€/MW], can be defined as: 

 

 𝑉𝑖
∗(𝑀𝑖) = max [(𝔼 [𝑂𝑃�̅�𝑖

𝐴(𝑀𝑖)] − 𝐼𝐶𝑖(𝑀𝑖)) ; 0] (25) 

 

In Eq. (25), 𝔼 [𝑂𝑃�̅�𝑖
𝐴(𝑀𝑖)] represents the expected present value of operating profits for 

a new MW of technology 𝑖, derived from the stochastic sample of price signals expected 

at 𝑀𝑖, while 𝐼𝐶𝑖(𝑀𝑖) denotes the required investment costs. The number of Monte Carlo 

realizations of the stochastic variables is set to 50000, in order to satisfy convergence 

criteria (sampling error) in the statistical estimation of the expected value of future 

profits. By considering a single period, 𝑑𝑡𝑖, between the current time and the Option 
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Maturity, the continuation value of the postponement option for technology 𝑖 at time 𝑡, 

𝑉𝑖
𝑐𝑜𝑛𝑡(𝑡) [€/MW], i.e. the project value if the decision is to postpone its execution, can 

be expressed by: 

 

 𝑉𝑖
𝑐𝑜𝑛𝑡(𝑡) =

𝑉𝑖
∗(𝑀)

(1 + 𝜑)𝑑𝑡𝑖
⁄  (26) 

 

This formulation for the continuation value involves European real options. In this case, 

it is assumed that the period 𝑑𝑡𝑖 equals 1 year for each technology. Due to 

irreversibility, the Option Maturity might be different according to the characteristics 

that differentiate base, middle and peak technologies. However, the value assigned here 

to the period 𝑑𝑡𝑖 for each technology intends only to represent a reasonable amount of 

time after which it is deemed that firms will be willing to reconsider the investment 

again, if the decision is to defer it. In addition, the 𝜑 in Eq. (26) denotes a risk-free 

discount rate. According to the DPE method, this parameter can be associated to the 

required return rate for each technology, 𝜌, which adjustment will then follow a non-

neutral valuation of risk. In that sense, a risk-free discount rate equal to 12.5%/year is 

adopted for each technology. 

 

Next, the exercise value for technology 𝑖, 𝑉𝑖
𝑒𝑥(𝑡) [€/MW], can be defined as the NPV of 

a new MW, according to the system state observed at time 𝑡. This can be expressed as: 

 

 𝑉𝑖
𝑒𝑥(𝑡) = 𝑂𝑃�̅�𝑖

𝐴(𝑡) − 𝐼𝐶𝑖(𝑡) (27) 

 

where 𝑂𝑃�̅�𝑖
𝐴(𝑡) represents the expected present value of operating profits for 

technology 𝑖 at time 𝑡; and 𝐼𝐶𝑖(𝑡) represents the capital outlay for bringing online a new 

generation unit from technology 𝑖. In this model, typical values equal to 1000 €/kW, 

600 €/kW and 300 €/kW correspond to investment costs for HC, CC and GT 

technologies, respectively. These values are assumed constant over the entire simulation 

period, and thus are used for computing instantly both the CV and the EV, in order to 

avoid the introduction of exogenous source of dynamics. 

 

The optimal investment policy for technology 𝑖 at time 𝑡, 𝑉𝑖
∗(𝑡) [€/MW], can then be 

derived from the following optimization problem: 
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 𝑉𝑖
∗(𝑡) = max [𝑂𝑃�̅�𝑖

𝐴(𝑡) − 𝐼𝑖(𝑡);
𝑉𝑖

∗(𝑀)
(1 + 𝜑)𝑑𝑡𝑖

⁄ ] (28) 

 

As mentioned by Blanco et al. (2012), the relationship given by Eq. (27) allows 

extending the conventional NPV-based rule for characterizing the feasibility of new 

projects. In that sense, a new investment decision threshold can be defined as follows: 

“At any time 𝑡, the decision-maker should not invest in a new project (and wait for 

reassessing it after a given period 𝑑𝑡𝑖 unless the current NPV of the investment portfolio 

(the Exercise Value) is greater than the Continuation Value”. Inspired by this concept, 

a new investment Profitability Index (PI) for technology 𝑖 at time 𝑡 can be defined as the 

ratio resulting from dividing the exercise value, 𝑉𝑖
𝑒𝑥(𝑡), by the continuation value, 

𝑉𝑖
𝑐𝑜𝑛𝑡(𝑡): 

 

 𝑃𝐼𝑖(𝑡) =
𝑉𝑖

𝑒𝑥(𝑡)
𝑉𝑖

𝑐𝑜𝑛𝑡(𝑡)⁄  (29) 

 

Finally, the PI is used in Eq. (5) to compute the investment multiplier for each 

technology. It then determines the aggregate investment rate that defines the adjustment 

of generating capacity from each technology in the electricity market model discussed 

in this work. In that sense, it is worth to notice that, under this new framework, the 

timing of investments as a function of the PI can be described schematically, as in Fig. 6 

(Luehrman, 1998). Whenever the exercise value is positive and it exceeds the 

continuation value, the optimal strategy should be to invest now (Region 1). However, 

when the exercise value does not exceed the value of the deferral option, the investor 

would be cautious about the uncertain conditions defining the market evolution and 

would probably reconsider to invest later (Region 2). It is intuitive to suppose that the 

project appraisal will be much more pessimistic whenever its instant NPV is negative. 

In that context, it is natural for each generator to withhold investments until new 

information about the market evolution arrives (Region 3). Moreover, when the exercise 

value is negative, and its absolute value even exceeds the continuation value, there 

would be no incentives to invest whatsoever (Region 4). In that case, the investor could 

even consider switching of business. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Figure 6 

 

4 Simulation and results 

 

4.1 Initial conditions 

 

Simulations were carried out in order to apply the proposed framework. These 

simulations were performed on the simplified thermal generation system presented in 

the last section. At the start of simulations, the test system is set to the long-run 

economic equilibrium. Input data on the attributes of each generating technology and 

the functions of investment responsiveness is included in Table I and Table II, 

respectively. Likewise, parameters for describing the stochastic evolution of maximum 

and minimum demand, total capacity and fuel prices are shown in Table II. The delay 

differential equations (DDE) defining the market dynamics were solved by means of the 

dde23 function of MATLAB. The simulation period extends for 20 years. 

 

Table I 

 

Table II 

 

Table III 

 

4.2 Base case simulation 

 

The simulation of installed capacity and reserve margins under the proposed investment 

valuation framework, alongside with the long-term peak demand, is depicted in Fig. 7. 

Results are relevant because the proposed approach allows reproducing explicitly the 

construction cycles that have arisen in several electricity markets after the liberalization 

(Arango and Larsen, 2011). This is explained due to a more refined characterization of 

investors’ decision-making under uncertainties, in addition to the embedded 

construction delays for new power plants of each technology. 

 

Fig. 7 
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The system response is described as follows. Given the zero-profit conditions at the start 

of simulations, i.e. long-term market equilibrium, the continuation value outweighs the 

exercise value of power plants for each technology. Thus, generators find more 

attractive to withhold new projects because they have the possibility to invest later and 

collect extraordinary profits associated to situations of supply deficit (Region 2 and 

Region 3 in Fig. 6). This leads to a dramatic reduction of reserve margins during the 

first years, just after the liberalization of the electricity market. Notwithstanding, it is 

worth to mention that such reduction displays a discontinuous behavior. An explanation 

is that the completion rate lags the investment rate by the construction time for each 

technology. Therefore, during the period 𝑡 ≤ �̅�𝑖
𝐶, power plants are still being completed 

according to the ordering rate given under the long-run market equilibrium. Only when 

𝑡 > �̅�𝑖
𝐶, the aggregate completion rate start to reflect investment rates resulting from the 

commercial decisions of investors in each technology. Then, the evolution of installed 

capacity and reserve margin begins to display a continuous behavior. 

 

The installed capacity decreases until reaching an extremely low value around year 4, 

when the value of immediately exercising the option to invest finally exceeds the 

continuation value for each technology. Only then, it becomes attractive to invest due to 

the high revenues being perceived thanks to the critical supply condition (Region 1 of 

Fig. 6). A stream of new units is thereby incorporated to the system, and remains until 

the continuation value begins to surpass the exercise value once again, due to the excess 

of capacity, around year 14. The construction cycle then starts over once again. 

 

This remarkable fluctuating behavior influences the electricity prices that must be paid 

by consumers. In Fig. 8, the average annual market price expected under the proposed 

framework is depicted. According to the alerted cyclical behavior, significant price 

spikes, coincident with the critical reduction of installed capacity, affect the market. 

This is a direct consequence of the price model, based on the stepped supply curve and 

the high value of load curtailment (VOLL). In addition, Fig. 8 shows the average annual 

cost of production. This is obtained from the weighted average of the marginal cost 

times the annual probability for the capacity from each vintage to set the market price, 

obtained through the prevailing Price Duration Curve (PDC) at each simulation step. In 

this case, the downward trend is explained by means of the steady replacement of old, 

inefficient generating units by others with higher thermal efficiency. This occurs despite 
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the increase in fuel prices, which grow at extremely low rates, allowing the increase of 

thermal efficiency to outweigh the effect of the escalation of fuel prices, resulting the 

net effect in an abatement of the production costs for each vintage over the simulation 

period. The difference between the patterns of price and production cost reflects the 

intrinsic impossibility of the system to adjust swiftly the installed capacity to the long-

run market development due to the investors’ decision-making under uncertainty as well 

as the embedded construction delays. 

 

Fig. 8 

 

The underlying causes for the simulated long-term market behavior can be appreciated 

by looking to Fig. 9. This figure shows the capacity under construction over time for 

each of the considered technologies. In addition, in dashed lines it depicts  the capacity 

under construction required for keeping the system under the long-term equilibrium, i.e. 

when investments are made under zero-profit expectations and thus investment rates 

exactly offset the decommissioning of old power plants and the long-term growth of 

demand. In that sense, the capacity under construction for each technology displays a 

quite volatile pattern under the proposed decision-making framework. By comparing 

this simulation with the price in Fig. 8, it can be seen that the decisions to invest in new 

capacity increase when the price escalates and, on the opposite, decrease when the price 

drop again because of the new generating units being brought online. An explanation for 

this fluctuating behavior is that investors are reluctant to commission new power plants 

until perceiving clear and consistent evidence of profitability. This is mainly because of 

the uncertain expectations upon the market development and the high component of 

irreversibility in generation investments. 

 

Fig. 9 

 

4.3 Sensitivity analysis 

 

Sensitivity analysis were carried out respect to the long-term demand growth rate and 

the volatility of demand growth rate expected at the Option Maturity for each 

technology. Fig. 10 depicts the simulation of capacity adequacy with long-term load 

growth rates of 0.5%/year and 2%/year. For the higher growth rates, it is observed that 
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the system shows a more dramatic reduction of reserve after the start of simulations. An 

explanation is that increased growth rates yield greater expectations upon deficit 

conditions in the short term for each technology. Hence, the continuation value severely 

outweighs the exercise value, and investors constrain even more the addition of new 

capacity. For the higher growth rates, when investment exercise becomes attractive, it is 

observed that the stream of new power plants is incorporated to the system at a higher 

rate. This would cause later a pronounced situation of capacity excess, which would 

define again the start of a new construction cycle, but of increased amplitude. Therefore, 

it is reasonable to predict a more volatile market condition as the demand growth rate 

increases. 

 

Fig. 10 

 

Fig. 11 shows the simulation of capacity adequacy for different volatilities of the 

demand growth rate expected at the Option Maturity for each technology. With higher 

volatilities, it is found that the market experiences a more dramatic depletion of reserve 

margins in the first years of simulation. As in the previous example, this is explained 

because the higher the volatility, the more likely the scarcity conditions that imply 

extraordinary profits in the short term for each technology. 

 

Fig. 11 

 

After the first drop of reserve margins, the market with lower volatilities of load growth 

needs to reach an overstepped capacity situation for the continuation value to exceed 

once again the investment exercise value for each technology. This behavior is 

explained due to the lack of uncertainties about the market evolution, which gives the 

signal to invest in more power plants than required. Later on, this leads to a more 

dramatic reduction of reserve margins, which impacts directly on the stability of market 

prices. On the opposite, fewer investments are required to be added for the continuation 

value of each technology to surpass again the exercise value in a highly volatile demand 

scenario. Despite the more stable market behavior, here the reserve margin is always 

below the economic optimum, which settles the market-clearing price on a rather high 

average value. An explanation is that investors are likely to execute new projects 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

proportionally in order to maintain low reserve margins and to secure high scarcity 

rents, in response to expectations upon a highly uncertain market evolution. 

 

The described patterns are coherent with the experience in actual electricity markets. In 

fact, lessons learned suggest that the combination of strong demand growth rates and 

high volatilities was one of the main reasons that led to crises in the supply security of 

several markets after the deregulation, e.g. in South America (Rudnick et al., 2005) 

 

4.4 Formal validation of the System Dynamics model 

 

This section addresses the formal validation of the proposed electricity market model. 

The procedure follows the implementation guidelines discussed by Barlas (1996), which 

includes a renowned literature body regarding SD modeling validation. The process thus 

involves the application of a “minimum” most-crucial set of validation tests, which are 

classified here according to the next two steps: 

 

1) Direct structure tests 

2) Structure-oriented behavior tests 

 

First, direct structure tests evaluate the validity of the model structure directly, based on 

knowledge about the actual structure of the system under study. This needs taking each 

mathematical equation (or logical relationship) that comprises the model individually, 

and comparing its suitability with evidence from the real system (Barlas, 1996). Second, 

structure-oriented behavior tests study the structure indirectly, by applying behavior 

tests on model-generated behavior patterns (Barlas, 1989; Forrester and Senge, 1980). 

Barlas (1996) highlights the overall importance of this second step because it reveals 

information on structure adequacy, while holding potential for being quantifiable and 

formalizable. 

 

Given the crucial nature of structure validity in SD modeling, the emphasis in both steps 

is on model structure. However, it is worth to recognize the existence of one last step 

(so-called behavior pattern tests), which assesses the prediction accuracy of the model 

output against real data. The reproduction of the actual behavior of the system under 

study is a relevant feature for SD models, but meaningful only after enough confidence 
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in the model structure is developed (Barlas, 1996). Moreover, for a significant number 

of works, including this one, it is not possible to address the third step since they discuss 

theoretic electricity markets with no historical data to compare with the model response. 

 

4.4.1 Direct structure tests 

 

In this step, it is proposed to apply the dimensional-consistency and the direct extreme-

condition tests (Forrester and Senge, 1980). First, the dimensional-consistency test 

entails checking the right-hand side and left-hand side of each model equation for 

dimensional consistency. Second, the direct extreme-condition test involves evaluating 

the validity of model equations under extreme conditions, by assessing the plausibility 

of the resulting values against the knowledge of what would happen under a similar 

condition in real life. Each equation is thus tested by assigning extreme values to its 

input variables, and comparing the value of the output variable to what would logically 

happen in the real system under the same extreme condition. It is worth to mention that 

these tests do not imply dynamic simulation, since they are applied to each equation in 

isolation, statically. 

 

Due to space restrictions, results from both tests are not included in this paper. 

However, documents summarizing such results are available online
11

 . The analysis is 

organized acknowledging the causal interrelationships among model equations. Thus, 

both tests address the output of model equations sequentially by following the logic of 

the balancing feedback structure shown in the CLD of Fig. 2. 

 

In particular, the direct extreme-condition test account for the initial peak and minimum 

demand and the financial costs for investors in each generating technology (𝐿𝑚𝑎𝑥(0), 

𝐿𝑚𝑖𝑛(0) and 𝜌, respectively) as test input variables. It is proposed to evaluate the 

response of each model equation under three extreme conditions: 

 

1) Large initial maximum and minimum demand 

2) Small initial maximum and minimum demand 

3) Large financial costs for investors in each generating technology. 

                                                 

11
 For results of the direct extreme-condition tests, please see the file available on https://goo.gl/cQ2vou. 

For results of the dimensional-consistency tests, please see the file available on https://goo.gl/eKJM9T. 
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The response is traced through each equation in order to define ultimately the power 

capacity under construction (𝐾𝑇
𝑈𝐶) of the entire system. The evaluation is performed 

immediately after the beginning of simulations, e.g. at time equal to around 2 months. 

The extreme values assigned to these variables and the expected ultimate responses are 

presented in Table IV. 

 

Table IV 

 

In the first condition, an increased demand implies an increase in profit expectations for 

each generating technology. This is explained because the average market price rises 

due to the permanent dispatch of the most-expensive generating units and the higher 

shortfall probability. Ultimately, investment signals for each technology escalate, and 

thus the system capacity under construction increases respect to the base case. The 

second condition, however, poses the opposite situation. Here, the market price 

plummets because the cheapest generating units are sufficient for serving the load. In 

addition, the probability of load shedding drops due to the large reserve of power 

capacity. Thus, expectations upon profits for each generating technology decrease and 

consequently the capacity under construction falls. The situation is quite different for 

the third condition. Here, no matter what market situation, the increased financial costs 

for each technology entail a dramatic reduction for the value of the cash flows expected 

over the amortization period. Therefore, investment signals for each technology fall and 

the capacity under construction of the entire system collapses. Finally, these results 

allow concluding that all model equations pass all of the proposed tests. 

 

4.4.2 Structure-oriented behavior tests 

 

In this stage, it is proposed to execute indirect extreme-condition tests. Extreme-

condition testing implies assigning extreme values to selected parameters and 

comparing the model-generated behavior to the expected behavior of the real system 

under the same extreme conditions. In that sense, a formal process inspired by the 
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Reality Check® functionality of Vensim®
12

 is followed. The tests are formalized in 

terms of two types of equations. First, Test Input equations allows specifying the 

conditions under which a Constraint is binding. Second, Constraint equations make 

statements about consequences that should result from a given set of conditions. They 

are called Constraints because they specify the way in which Test Inputs should 

constrain the system behavior. The violation of a Constraint indicates a problem with 

the model. Thus, the proposed extreme-condition tests to be applied are: 

 

1) First test: Large Demand, Increasing Capacity under construction 

2) Second test: Small Demand, Decreasing Capacity under construction 

3) Third test: Large financial costs, Decreasing Capacity under construction 

 

First test: Large Demand, Increasing Capacity under construction 

The Test Input equations are: 

 

 𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑎𝑥(0) × 25 (30) 

 

 𝐿𝑚𝑖𝑛
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑖𝑛(0) × 25 (31) 

 

The Constraint equation is: 

 

THE CONDITION: 𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑎𝑥(0) × 25 AND 𝐿𝑚𝑖𝑛

𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑖𝑛(0) × 25 

 IMPLIES: 𝐾𝑇
𝑈𝐶(𝑡) > 𝐾𝑇

𝑈𝐶 ∗
(𝑡) (32) 

 

First, 𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇(0) and 𝐿𝑚𝑖𝑛

𝑇𝐸𝑆𝑇(0) are the test initial peak and minimum demand, 

respectively; while 𝐿𝑚𝑎𝑥(0) and 𝐿𝑚𝑖𝑛(0) are the initial peak and minimum demand for 

the base case, respectively. Then, 𝐾𝑇
𝑈𝐶(𝑡) is the total system capacity under construction 

at any time 𝑡 > 0 and 𝐾𝑇
𝑈𝐶 ∗

(𝑡) is the capacity under construction in the long-term 

equilibrium. 

 

Second test: Small Demand, Decreasing Capacity under construction 

 

                                                 

12
 Vensim® is an industrial-strength simulation software for improving the performance of real systems. 

For more information, please visit: https://goo.gl/ZnE2Kp. 
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The Test Input equations are: 

 

 𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑎𝑥(0)/25 (33) 

 

 𝐿𝑚𝑖𝑛
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑖𝑛(0)/25 (34) 

 

The Constraint equation is: 

 

THE CONDITION: 𝐿𝑚𝑎𝑥
𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑎𝑥(0)/25 AND 𝐿𝑚𝑖𝑛

𝑇𝐸𝑆𝑇(0) = 𝐿𝑚𝑖𝑛(0)/25 

 IMPLIES: 𝐾𝑇
𝑈𝐶(𝑡) < 𝐾𝑇

𝑈𝐶 ∗
(𝑡) (35) 

 

In this set of equations, the variables are identical to that from the first test. 

 

Third test: Large financial costs, Decreasing Capacity under construction 

 

The Test Input equations are: 

 

 𝜌𝑇𝐸𝑆𝑇 = 𝜌 × 25 (36) 
 

The Constraint equation is: 

 

THE CONDITION: 𝜌𝑇𝐸𝑆𝑇 = 𝜌 × 25 

 IMPLIES: 𝐾𝑇
𝑈𝐶(𝑡) < 𝐾𝑇

𝑈𝐶 ∗
(𝑡) (37) 

 

Here, 𝜌𝑇𝐸𝑆𝑇 is the test required revenue rate for investors in each generating technology, 

while 𝜌 is the base case value for the same variable. 

 

The Constraint defined for each test is explained with the analogous logic exposed in 

the previous section regarding the outcome of the direct extreme condition tests. In that 

sense, the first, second and third test presented here are associated to the first, second 

and third direct extreme-condition tests, respectively. Results from dynamic simulations 

involving the three indirect extreme-condition tests are depicted in Fig. 12, 13 and 14, 

respectively. In each case, it is verified that none of the Constraints is violated at any 

time over the simulation period and thus the model pass all of the proposed tests. 
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Fig. 12 

 

Fig. 13 

 

Fig. 14 

 

 

5 Conclusion 

 

This paper proposes a novel decision-making framework to model investment dynamics 

and long-run capacity adequacy in liberalized power markets. The design of this 

framework has taken advantage of a well-founded background for describing the long-

term market dynamics based on System Dynamics simulation approach. However, this 

work is different as it focuses on modeling the microeconomics of decision-making of 

generators, accounting for the option to postpone new power plants projects under 

uncertainty. In that sense, the integration of a valuation framework of irreversible 

investments under uncertainty, elaborated upon Real Options Analysis, with a long-term 

electricity market model is the main contribution of this paper. 

 

Here, Real Options Analysis is integrated into the dynamic market model by means of a 

technique based on stochastic dynamic programming. This technique allows computing 

at each simulation step the Exercise Value (EV) and the Continuation Value (CV) that 

are used for guiding the decision-making of new investments from each technology 

composing the generation system. First, the CV gives the expected present value of new 

projects if the decision is to postpone them. The CV is related to a stochastic sample of 

price signals that accounts for investors’ expectations upon uncertain market conditions 

some period after each the simulation step. Such period, so-called the Option Maturity, 

represents the moment when the project must be decided (or not) in the future if it is 

postponed. Second, the EV denotes the present value of undertaking new projects 

immediately. The EV is then associated to the price signal that is observed by investors 

at each simulation step, according to current market conditions. 

 

Simulation results have shown that with the proposed decision-making model the long-

term market evolution is defined by explicit construction cycles. This is consistent with 
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the empirical evidence that have been reported from several electricity markets after 

deregulation as well as with the outcome of previous works that have modeled the 

market development by considering alternative investment functions. In that sense, the 

main contribution of this paper is the reproduction of construction cycles by 

incorporating a mathematical model that describes the investors’ decision-making under 

uncertainty by accounting for the option to postpone new generating units. Sensitivity 

analysis regarding some relevant exogenous variables have suggested that the 

combination of strong demand growth rates with large volatilities would derive in an 

even more fluctuating evolution of the installed capacity. Finally, the model has been 

validated by applying a formal procedure according to the scope of System Dynamics 

modeling approach. 

 

5.1 Critical review of the model 

 

This work considers a test electricity system organized under an energy-only market. 

However, the importance of additional remuneration mechanisms is noteworthy in the 

current debate on market designs. In that sense, the analysis of capacity remuneration 

mechanisms might shed light into the suitability of investment incentives for achieving 

a more stable development of the liberalized power industry in the long term. 

 

In addition, the scope of this article is delimited to shed light on factors driving the 

market according to the prevailing energy mix based on thermal technologies. 

Notwithstanding, it is worth to recognize the relevance of further emission-free 

generation technologies nowadays, i.e. nuclear and hydropower. Moreover, the 

mainstream academic discussion now involves the transition towards the large 

integration of non-conventional renewable technologies, such as wind, solar, etc. In 

those cases, an additional uncertainty source arises in terms of the availability of the 

primary energy resource. In that sense, it is worth to mention that the analysis and price 

modeling of a pure thermal generation system is much easier than a hydrothermal power 

system with significant storage capacity in water reservoirs. Uncertainties associated to 

the intermittency of primary renewable resources could derive in larger uncertainties 

regarding demand fluctuations. However, it is worth to remark as well that one of the 

main contributions of this paper is the validation of the outcome of the dynamic ROA 

model according to the empirical construction cycles that appeared in the earlier 
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implementation of deregulated power markets. In that sense, the market architecture has 

also seek to be consistent with those situations where a fuel-based energy-only market 

was predominant. 

 

Finally, this paper considerers the demand as price-inelastic in the short-term. However, 

electricity demand, if exposed to spot prices, might develop some degree of elasticity 

over a longer period by reallocating or reducing consumption. Moreover, novel 

technologies (i.e. smart grids, energy storage) expand the possibilities for consumers to 

be much more responsive to electricity prices. Thus, it is reasonable to expect an impact 

on the long-term evolution of power markets due to major shifts in load patterns. This 

topic should be at the center of interest in the upcoming years. 

 

In that context, the proposed mathematical framework is versatile enough to incorporate 

several extensions and improvements without much effort. Thus, work delving on 

dealing with these topics is foreseen in further projects. 
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Fig. 1: Causal-loop Diagram of the long-term development of electricity markets 
under the proposed decision-making framework. 

Fig. 2: Estimation of evolution of thermal efficiencies for the technologies in the 
test generation system. 
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Fig. 3: Logistic curves representing the investment multiplier as a function of the 
profitability index for each technology. 

Fig. 4: Simulation of the observed and expected maximum demand at time 𝑡 after 
the beginning of simulations. 
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Fig. 5: Exemplary definition of a Price Duration Curve (PDC). 

Fig. 6: Investment decision regions in the Exercise-Continuation Value plane. 
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Fig. 7: Simulation of installed capacity and reserve margins. 

Fig. 8: Simulation of the expected annual production cost and market price. 
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Fig. 9: Simulation of the capacity under construction for the three considered 
technologies. 

Fig. 10: Simulation of reserve margins with different long-term demand growth 
rates. 
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Fig. 11: Simulation of reserve margins with different volatilities for the demand 
growth rate expected at the Option Maturity. 

Fig. 12: Simulation of the capacity under construction for the three considered 
technologies with the first indirect extreme-condition test. 
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Fig. 13: Simulation of the capacity under construction for the three considered 
technologies with the second indirect extreme-condition test. 

Fig. 14: Simulation of the capacity under construction for the three considered 
technologies with the third indirect extreme-condition test 
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Tables 

 

 

TABLE I: Input data for the generation test system. 
Technology HC CC GT 

Capacity (𝐾𝑖) [MW] 11905 2540 2020 

Construction delay (�̅�𝑖
𝐶)[month] 36 18 9 

Lifetime (𝑇𝑖) [year] 40 30 20 

Investment costs (𝐼𝐶𝑖) [€/kW] 1000 600 300 

Amortization period (�̅�𝑖
𝐴) [year] 25 20 15 

Discount rate (𝜌) [%/year] 12.5 12.5 12.5 

Fixed costs [€/MWh] 14.92 9.33 5.06 

Fuel price (𝐹𝑃𝑖) [€/MWh] 6.50 10.50 10.50 

Efficiency (with age structure at 𝑡 = 0) [adim] 0.4063 0.4625 0.3072 

VOLL [€/MWh] 1000 1000 1000 

Usage duration (𝐷𝑖) (at 𝑡 = 0) [adim] 0.8345 0.3723 0.0052 

Unit availability (𝑞) (at 𝑡 = 0) [adim] 0.9096 0.9096 0.9096 

 

 

TABLE II: Parameters of the logistic functions of investment responsiveness. 
Parameters HC CC GT 

Saturation (𝑖𝑚𝑖
𝑚𝑎𝑥) 1.5 3.0 2.0 

Alpha (𝛼𝑖) 3.5 2.0 2.5 

Beta (𝛽𝑖) -2.8069 -2.6932 -2.5000 

 

 

TABLE III: Parameters to describe the stochastic evolution of peak and minimum 
demand (𝑔𝐿), total installed capacity (𝑔𝐾), and fuel prices at the Option Maturity. 

Parameters 𝒈𝑳 𝒈𝑲 𝒈𝑭𝑷
𝒄𝒐𝒂𝒍 𝒈𝑭𝑷

𝒈𝒂𝒔
 

Long-term growth rate (�̅�) [%/year] 1.00 1.00 0.02 0.02 

Speed of reversion (𝜂) [%/year] 50.0 50.0 50.0 50.0 

Volatility (𝜎) [%/year] 2.00 2.00 1.85 3.95 

Correlation [adim] 0.80 0.80 0.70 0.70 
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Table IV: Key parameters and results of the performed direct extreme-condition 
tests. 

 Base case 
Test #1: 

Large demand 

Test #2: 

No demand 

Test #2: 

Large costs 

Test input variables 

𝐿𝑚𝑎𝑥(0) [MW] 15,000 225,000 600 15,000 

𝐿𝑚𝑖𝑛(0) [MW] 10,000 150,000 400 10,000 

𝜌 [%/year] 12.5 12.5 12.5 312.5 

𝑡 [month] 2.25 2.25 2.25 2.25 

Model output (ultimate) 

𝐾𝑇
𝑈𝐶(𝑡) [MW] 1,350 2,350 1,344 1,344 

Result Base case Increase Decrease Decrease 

Pass/Fail Base case Pass Pass Pass 

 

 

Appendix 

 

Polynomial estimation of thermal efficiencies in Fig. 2 (𝒕 > 𝒕𝟎 and 𝒕𝟎 = 𝟐𝟎𝟎𝟎) 

(𝒕 in months) 

 

HC: +1.5684e − 24𝑡4 − 6.2935e − 22𝑡3 + 6.2014e − 20𝑡2 + 1.6667e − 04𝑡 + 0.455 

CC: −3.2150e − 11𝑡4 + 1.9290e − 08𝑡3 − 4.0509e − 06𝑡2 + 5.1389e − 04𝑡 + 0.600 

GT: −3.2150e − 11𝑡4 + 1.9290e − 08𝑡3 − 4.7454e − 06𝑡2 + 7.2222e − 04𝑡 + 0.350 
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